16 research outputs found

    Opioid-Induced Hyperalgesic Priming in Single Nociceptors.

    No full text

    Fentanyl Induces Rapid Onset Hyperalgesic Priming: Type I at Peripheral and Type II at Central Nociceptor Terminals

    No full text
    Systemic fentanyl induces hyperalgesic priming, long-lasting neuroplasticity in nociceptor function characterized by prolongation of inflammatory mediator hyperalgesia. To evaluate priming at both nociceptor terminals, we studied, in male Sprague Dawley rats, the effect of local administration of agents that reverse type I (protein translation) or type II [combination of Src and mitogen-activated protein kinase (MAPK)] priming. At the central terminal, priming induced by systemic, intradermal, or intrathecal fentanyl was reversed by the combination of Src and MAPK inhibitors, but at the peripheral terminal, it was reversed by the protein translation inhibitor. Mu-opioid receptor (MOR) antisense prevented fentanyl hyperalgesia and priming. To determine whether type I and II priming occur in the same population of neurons, we used isolectin B4-saporin or [Sar9, Met(O2)11]-substance P-saporin to deplete nonpeptidergic or peptidergic nociceptors, respectively. Following intrathecal fentanyl, central terminal priming was prevented by both saporins, whereas that in peripheral terminal was not attenuated even by their combination. However, after intradermal fentanyl, priming in the peripheral terminal requires both peptidergic and nonpeptidergic nociceptors, whereas that in the central terminal is dependent only on peptidergic nociceptors. Pretreatment with dantrolene at either terminal prevented fentanyl-induced priming in both terminals, suggesting communication between central and peripheral terminals mediated by intracellular Ca2+ signaling. In vitro application of fentanyl increased cytoplasmic Ca2+ concentration in dorsal root ganglion neurons, which was prevented by pretreatment with dantrolene and naloxone. Therefore, acting at MOR in the nociceptor, fentanyl induces hyperalgesia and priming rapidly at both the central (type II) and peripheral (type I) terminal and this is mediated by Ca2+ signaling.SIGNIFICANCE STATEMENT Fentanyl, acting at the Ī¼-opioid receptor (MOR), induces hyperalgesia and hyperalgesic priming at both the central and peripheral terminal of nociceptors and this is mediated by endoplasmic reticulum Ca2+ signaling. Priming in the central terminal is type II, whereas that in the peripheral terminal is type I. Our findings may provide useful information for the design of drugs with improved therapeutic profiles, selectively disrupting individual MOR signaling pathways, to maintain an adequate long-lasting control of pain

    Opioid-Induced Hyperalgesic Priming in Single Nociceptors.

    No full text
    Clinical Āµ-opioid receptor (MOR) agonists produce hyperalgesic priming, a form of maladaptive nociceptor neuroplasticity, resulting in pain chronification. We have established an in vitro model of opioid-induced hyperalgesic priming (OIHP), in male rats, to identify nociceptor populations involved and its maintenance mechanisms. OIHP was induced in vivo by systemic administration of fentanyl and confirmed by prolongation of prostaglandin E2 (PGE2) hyperalgesia. Intrathecal cordycepin, which reverses Type I priming, or the combination of Src and mitogen-activated protein kinase (MAPK) inhibitors, which reverses Type II priming, both partially attenuated OIHP. Parallel in vitro experiments were performed on small-diameter (<30 Āµm) dorsal root ganglion (DRG) neurons, cultured from fentanyl-primed rats, and rats with OIHP treated with agents that reverse Type I or Type II priming. Enhancement of the sensitizing effect of a low concentration of PGE2 (10 nm), another characteristic feature of priming, measured as reduction in action potential (AP) rheobase, was found in weakly isolectin B4 (IB4)-positive and IB4-negative (IB4-) neurons. In strongly IB4-positive (IB4+) neurons, only the response to a higher concentration of PGE2 (100 nm) was enhanced. The sensitizing effect of 10 nm PGE2 was attenuated in weakly IB4+ and IB4- neurons cultured from rats whose OIHP was reversed in vivo Thus, in vivo administration of fentanyl induces neuroplasticity in weakly IB4+ and IB4- nociceptors that persists in vitro and has properties of Type I and Type II priming. The mechanism underlying the enhanced sensitizing effect of 100 nm PGE2 in strongly IB4+ nociceptors, not attenuated by inhibitors of Type I and Type II priming, remains to be elucidated.SIGNIFICANCE STATEMENT Commonly used clinical opioid analgesics, such as fentanyl and morphine, can produce hyperalgesia and chronification of pain. To uncover the nociceptor population mediating opioid-induced hyperalgesic priming (OIHP), a model of pain chronification, and elucidate its underlying mechanism, at the cellular level, we established an in vitro model of OIHP. In dorsal root ganglion (DRG) neurons cultured from rats primed with fentanyl, robust nociceptor population-specific changes in sensitization by prostaglandin E2 (PGE2) were observed, when compared with nociceptors from opioid naive rats. In DRG neurons cultured from rats with OIHP, enhanced PGE2-induced sensitization was observed in vitro, with differences identified in non-peptidergic [strongly isolectin B4 (IB4)-positive] and peptidergic [weakly IB4-positive (IB4+) and IB4-negative (IB4-)] nociceptors

    Marked Sexual Dimorphism in the Role of the Ryanodine Receptor in a Model of Pain Chronification in the Rat.

    No full text
    Hyperalgesic priming, an estrogen dependent model of the transition to chronic pain, produced by agonists at receptors that activate protein kinase C epsilon (PKCĪµ), occurs in male but not in female rats. However, activation of second messengers downstream of PKCĪµ, such as the ryanodine receptor, induces priming in both sexes. Since estrogen regulates intracellular calcium, we investigated the interaction between estrogen and ryanodine in the susceptibility to develop priming in females. The lowest dose of ryanodine able to induce priming in females (1ā€‰pg) is 1/100,000(th) that needed in males (100ā€‰ng), an effect dependent on the activation of ryanodine receptors. Treatment of female rats with antisense to estrogen receptor alpha (ERĪ±), but not beta (ERĪ²), mRNA, prevented the induction of priming by low dose ryanodine, and the ERĪ± agonist, PPT, induced ryanodine receptor-dependent priming. In vitro application of ryanodine in low concentration (2ā€‰nM) to small DRG neurons cultured from females, significantly potentiated calcium release via ryanodine receptors induced by caffeine. This effect was only observed in IB4+ neurons, cultured in the presence of Ī²-estradiol or PPT. Our results demonstrate a profound regulatory role of ERĪ± in ryanodine receptor-dependent transition to chronic pain

    CD44 Signaling Mediates High Molecular Weight Hyaluronan-Induced Antihyperalgesia

    No full text
    We studied, in male Sprague Dawley rats, the role of the cognate hyaluronan receptor, CD44 signaling in the antihyperalgesia induced by high molecular weight hyaluronan (HMWH). Low molecular weight hyaluronan (LMWH) acts at both peptidergic and nonpeptidergic nociceptors to induce mechanical hyperalgesia that is prevented by intrathecal oligodeoxynucleotide antisense to CD44 mRNA, which also prevents hyperalgesia induced by a CD44 receptor agonist, A6. Ongoing LMWH and A6 hyperalgesia are reversed by HMWH. HMWH also reverses the hyperalgesia induced by diverse pronociceptive mediators, prostaglandin E2, epinephrine, TNFĪ±, and interleukin-6, and the neuropathic pain induced by the cancer chemotherapy paclitaxel. Although CD44 antisense has no effect on the hyperalgesia induced by inflammatory mediators or paclitaxel, it eliminates the antihyperalgesic effect of HMWH. HMWH also reverses the hyperalgesia induced by activation of intracellular second messengers, PKA and PKCĪµ, indicating that HMWH-induced antihyperalgesia, although dependent on CD44, is mediated by an intracellular signaling pathway rather than as a competitive receptor antagonist. Sensitization of cultured small-diameter DRG neurons by prostaglandin E2 is also prevented and reversed by HMWH. These results demonstrate the central role of CD44 signaling in HMWH-induced antihyperalgesia, and establish it as a therapeutic target against inflammatory and neuropathic pain.SIGNIFICANCE STATEMENT We demonstrate that hyaluronan (HA) with different molecular weights produces opposing nociceptive effects. While low molecular weight HA increases sensitivity to mechanical stimulation, high molecular weight HA reduces sensitization, attenuating inflammatory and neuropathic hyperalgesia. Both pronociceptive and antinociceptive effects of HA are mediated by activation of signaling pathways downstream CD44, the cognate HA receptor, in nociceptors. These results contribute to our understanding of the role of the extracellular matrix in pain, and indicate CD44 as a potential therapeutic target to alleviate inflammatory and neuropathic pain

    Sexual Dimorphism in a Reciprocal Interaction of Ryanodine and IP3 Receptors in the Induction of Hyperalgesic Priming

    No full text
    Hyperalgesic priming, a model of pain chronification in the rat, is mediated by ryanodine receptor-dependent calcium release. Although ryanodine induces priming in both sexes, females are 5 orders of magnitude more sensitive, by an estrogen receptor Ī± (EsRĪ±)-dependent mechanism. An inositol 1,4,5-triphosphate (IP3) receptor inhibitor prevented the induction of priming by ryanodine. For IP3 induced priming, females were also more sensitive. IP3-induced priming was prevented by pretreatment with inhibitors of the sarcoendoplasmic reticulum calcium ATPase and ryanodine receptor. Antisense to EsRĪ± prevented the induction of priming by low-dose IP3 in females. The induction of priming by an EsRĪ± agonist was ryanodine receptor-dependent and prevented by the IP3 antagonist. Thus, an EsRĪ±-dependent bidirectional interaction between endoplasmic reticulum IP3 and ryanodine receptor-mediated calcium signaling is present in the induction of hyperalgesic priming, in females. In cultured male DRG neurons, IP3 (100 Ī¼m) potentiated depolarization-induced transients produced by extracellular application of high-potassium solution (20 mm, K20), in nociceptors incubated with Ī²-estradiol. This potentiation of depolarization-induced calcium transients was blocked by the IP3 antagonist, and not observed in the absence of IP3 IP3 potentiation was also blocked by ryanodine receptor antagonist. The application of ryanodine (2 nm), instead of IP3, also potentiated K20-induced calcium transients in the presence of Ī²-estradiol, in an IP3 receptor-dependent manner. Our results point to an EsRĪ±-dependent, reciprocal interaction between IP3 and ryanodine receptors that contributes to sex differences in hyperalgesic priming.SIGNIFICANCE STATEMENT The present study demonstrates a mechanism that plays a role in the marked sexual dimorphism observed in a model of the transition to chronic pain, hyperalgesic priming. This mechanism involves a reciprocal interaction between the endoplasmic reticulum receptors, IP3 and ryanodine, in the induction of priming, regulated by estrogen receptor Ī± in the nociceptor of female rats. The presence of this signaling pathway modulating the susceptibility of nociceptors to develop plasticity may contribute to our understanding of sex differences observed clinically in chronic pain syndromes
    corecore