7 research outputs found

    Unlocking the potential of approved drugs for the allosteric inhibition of tropomyosin-receptor kinase A using molecular docking and molecular dynamics studies

    Get PDF
    Tropomyosin-receptor kinase A (TrkA) is the primary isoform among the tropomyosin-receptor kinases that have been associated with human cancer development, contributing to approximately 7.4% of all cancer cases. TrkA represents an attractive target for cancer treatment; however, currently available TrkA inhibitors face limitations in terms of resistance development and potential toxicity. Hence, the objective of this study was to identify new allosteric-approved inhibitors of TrkA that can overcome these challenges and be employed in cancer therapy. To achieve this goal, a screening of 9,923 drugs from the ChEMBL database was conducted to assess their repurposing potential using molecular docking. The top 49 drug candidates, exhibiting the highest docking scores (−11.569 to −7.962 kcal/mol), underwent MM-GBSA calculations to evaluate their binding energies. Delanzomib and tibalosin, the top two drugs with docking scores of −10.643 and −10.184 kcal/mol, respectively, along with MM-GBSA dG bind values of −67.96 and −50.54 kcal/mol, were subjected to 200 ns molecular dynamic simulations, confirming their stable interactions with TrkA. Based on these findings, we recommend further experimental evaluation of delanzomib and tibalosin to determine their potential as allosteric inhibitors of TrkA. These drugs have the potential to provide more effective and less toxic therapeutic alternatives. The approach employed in this study, which involves repurposing drugs through molecular docking and molecular dynamics, serves as a valuable tool for identifying novel drug candidates with distinct therapeutic uses. This methodology can contribute to reducing the attrition rate and expediting the process of drug discovery

    <i>Ferula sinkiangensis</i> (Chou-AWei, Chinese <i>Ferula</i>): Traditional Uses, Phytoconstituents, Biosynthesis, and Pharmacological Activities

    No full text
    Ferula is the third largest genus of the Apiaceae family, its species are utilized as a remedy for diverse ailments all over the world. F. sinkiangensis K. M. Shen (Chou-AWei, Chinese Ferula) is mainly found in Xin-jiang Uygur Autonomous Region, China. Traditionally, it is utilized for treating various illnesses such as digestive disorders, rheumatoid arthritis, wound infection, baldness, bronchitis, ovarian cysts, intestinal worms, diarrhea, malaria, abdominal mass, cold, measles, and bronchitis. It can produce different classes of metabolites such as sesquiterpene coumarins, steroidal esters, lignans, phenylpropanoids, sesquiterpenes, monoterpenes, coumarins, organic acid glycosides, and sulfur-containing compounds with prominent bioactivities. The objective of this work is to point out the reported data on F. sinkiangensis, including traditional uses, phytoconstituents, biosynthesis, and bioactivities. In the current work, 194 metabolites were reported from F. sinkiangensis in the period from 1987 to the end of 2022. Nevertheless, future work should be directed to conduct in vivo, mechanistic, and clinical assessments of this plant`s metabolites to confirm its safe usage

    <i>Aspergillus nidulans</i>—Natural Metabolites Powerhouse: Structures, Biosynthesis, Bioactivities, and Biotechnological Potential

    No full text
    Nowadays, finding out new natural scaffolds of microbial origin increases at a higher rate than in the past decades and represents an auspicious route for reinvigorating the pool of compounds entering pharmaceutical industries. Fungi serve as a depository of fascinating, structurally unique metabolites with considerable therapeutic significance. Aspergillus genus represents one of the most prolific genera of filamentous fungi. Aspergillus nidulans Winter G. is a well-known and plentiful source of bioactive metabolites with abundant structural diversity, including terpenoids, benzophenones, sterols, alkaloids, xanthones, and polyketides, many of which display various bioactivities, such as cytotoxicity, antioxidant, anti-inflammatory, antiviral, and antimicrobial activities. The current work is targeted to survey the reported literature on A. nidulans, particularly its metabolites, biosynthesis, and bioactivities, in addition to recent reports on its biotechnological potential. From 1953 till November 2022, relying on the stated data, 206 metabolites were listed, with more than 100 references

    Recent advances on natural depsidones: sources, biosynthesis, structure-activity relationship, and bioactivities

    Get PDF
    Depsidones are a class of polyphenolic polyketides that have been proposed to be biosynthesized from oxidative coupling of esters of two polyketidic benzoic acid derivatives. They are principally encountered in fungi and lichens. In addition to their diversified structural features, they revealed varied bioactivities such as antimicrobial, antimalarial, cytotoxic, anti-inflammatory, anti-Helicobacter pylori, antimycobacterial, antihypertensive, anti-diarrheal, antidiabetic, phytotoxic, anti-HIV, anti-osteoclastogenic, and butyrylcholinesterase, tyrosinase, hyaluronidase, and acetylcholinesterase inhibition. The current work was targeted to provide an overview on the naturally reported depsidones from various sources in the period from 2018 to the end of 2022 including their structures, biosynthesis, sources, and bioactivities, as well as the reported structure-activity relationship and semisynthetic derivatives. A total of 172 metabolites with 87 references were reviewed. The reported findings unambiguously demonstrated that these derivatives could be promising leads for therapeutic agents. However, further in-vivo evaluation of their potential biological properties and mechanistic investigations are needed

    Genus <i>Acanthella</i>—A Wealthy Treasure: Secondary Metabolites, Synthesis, Biosynthesis, and Bioactivities

    No full text
    Marine sponges are multicellular and primitive animals that potentially represent a wealthy source of novel drugs. The genus Acanthella (family Axinellidae) is renowned to produce various metabolites with various structural characteristics and bioactivities, including nitrogen-containing terpenoids, alkaloids, and sterols. The current work provides an up-to-date literature survey and comprehensive insight into the reported metabolites from the members of this genus, as well as their sources, biosynthesis, syntheses, and biological activities whenever available. In the current work, 226 metabolites have been discussed based on published data from the period from 1974 to the beginning of 2023 with 90 references

    Natural Reno-Protective Agents against Cyclosporine A-Induced Nephrotoxicity: An Overview

    No full text
    CA (cyclosporine A) is a powerful immunosuppressing agent that is commonly utilized for treating various autoimmune illnesses and in transplantation surgery. However, its usage has been significantly restricted because of its unwanted effects, including nephrotoxicity. The pathophysiology of CA-induced kidney injury involves inflammation, apoptosis, tubular injury, oxidative stress, and vascular injury. Despite the fact that exact mechanism accountable for CA’s effects is inadequately understood, ROS (reactive oxygen species) involvement has been widely proposed. At present, there are no efficient methods or drugs for treating CA-caused kidney damage. It is noteworthy that diverse natural products have been investigated both in vivo and in-vitro for their possible preventive potential in CA-produced nephrotoxicity. Various extracts and natural metabolites have been found to possess a remarkable potential for restoring CA-produced renal damage and oxidative stress alterations via their anti-apoptosis, anti-inflammatory, and antioxidative potentials. The present article reviews the reported studies that assess the protective capacity of natural products, as well as dietary regimens, in relation to CA-induced nephrotoxicity. Thus, the present study presents novel ideas for designing and developing more efficient prophylactic or remedial strategies versus CA passive influences

    Detection of Nonsynonymous Single Variants in Human HLA-DRB1 Exon 2 Associated with Renal Transplant Rejection

    No full text
    Background: HLA-DRB1 is the most polymorphic gene in the human leukocyte antigen (HLA) class II, and exon 2 is critical because it encodes antigen-binding sites. This study aimed to detect functional or marker genetic variants of HLA-DRB1 exon 2 in renal transplant recipients (acceptance and rejection) using Sanger sequencing. Methods: This hospital-based case-control study collected samples from two hospitals over seven months. The 60 participants were equally divided into three groups: rejection, acceptance, and control. The target regions were amplified and sequenced by PCR and Sanger sequencing. Several bioinformatics tools have been used to assess the impact of non-synonymous single-nucleotide variants (nsSNVs) on protein function and structure. The sequences data that support the findings of this study with accession numbers (OQ747803-OQ747862) are available in National Center for Biotechnology Information (GenBank database). Results: Seven SNVs were identified, two of which were novel (chr6(GRCh38.p12): 32584356C>A (K41N) and 32584113C>A (R122R)). Three of the seven SNVs were non-synonymous and found in the rejection group (chr6(GRCh38.p12): 32584356C>A (K41N), 32584304A>G (Y59H), and 32584152T>A (R109S)). The nsSNVs had varying effects on protein function, structure, and physicochemical parameters and could play a role in renal transplant rejection. The chr6(GRCh38.p12):32584152T>A variant showed the greatest impact. This is because of its conserved nature, main domain location, and pathogenic effects on protein structure, function, and stability. Finally, no significant markers were identified in the acceptance samples. Conclusion: Pathogenic variants can affect intramolecular/intermolecular interactions of amino acid residues, protein function/structure, and disease risk. HLA typing based on functional SNVs could be a comprehensive, accurate, and low-cost method for covering all HLA genes while shedding light on previously unknown causes in many graft rejection cases
    corecore