1,208 research outputs found

    Delayed Detonation at a Single Point in Exploding White Dwarfs

    Get PDF
    Delayed detonation in an exploding white dwarf, which propagates from an off-center transition point, rather than from a spherical transition shell, is described and simulated. The differences between the results of 2D simulations and the 1D case are presented and discussed. The two dimensional effects become significant in transition density below 3.e7 g/cm^3, where the energetics, the production of Fe group elements and the symmetry of the explosion are all affected. In the 2D case the explosion is less energetic and less Ni is produced in the detonation phase of the explosion. For low transition density the reduction in Ni mass can reach 20-30 percent. The asymmetry in abundances between regions close to the transition point and regions far from that point is large, and could be a source to polarization patterns in the emitted light. We conclude that the spatial and temporal distribution of transition locations, is an important parameter which must be included in delayed detonation models for Type Ia supernovae. \Comment: 11 pages, 1 figur

    Detailed Spectral Modeling of a 3-D Pulsating Reverse Detonation Model: Too Much Nickel

    Full text link
    We calculate detailed NLTE synthetic spectra of a Pulsating Reverse Detonation (PRD) model, a novel explosion mechanism for Type Ia supernovae. While the hydro models are calculated in 3-D, the spectra use an angle averaged hydro model and thus some of the 3-D details are lost, but the overall average should be a good representation of the average observed spectra. We study the model at 3 epochs: maximum light, seven days prior to maximum light, and 5 days after maximum light. At maximum the defining Si II feature is prominent, but there is also a prominent C II feature, not usually observed in normal SNe Ia near maximum. We compare to the early spectrum of SN 2006D which did show a prominent C II feature, but the fit to the observations is not compelling. Finally we compare to the post-maximum UV+optical spectrum of SN 1992A. With the broad spectral coverage it is clear that the iron-peak elements on the outside of the model push too much flux to the red and thus the particular PRD realizations studied would be intrinsically far redder than observed SNe Ia. We briefly discuss variations that could improve future PRD models.Comment: 15 pages, 4 figures, submitted to Ap

    Detonating Failed Deflagration Model of Thermonuclear Supernovae I. Explosion Dynamics

    Get PDF
    We present a detonating failed deflagration model of Type Ia supernovae. In this model, the thermonuclear explosion of a massive white dwarf follows an off-center deflagration. We conduct a survey of asymmetric ignition configurations initiated at various distances from the stellar center. In all cases studied, we find that only a small amount of stellar fuel is consumed during deflagration phase, no explosion is obtained, and the released energy is mostly wasted on expanding the progenitor. Products of the failed deflagration quickly reach the stellar surface, polluting and strongly disturbing it. These disturbances eventually evolve into small and isolated shock-dominated regions which are rich in fuel. We consider these regions as seeds capable of forming self-sustained detonations that, ultimately, result in the thermonuclear supernova explosion. Preliminary nucleosynthesis results indicate the model supernova ejecta are typically composed of about 0.1-0.25 Msun of silicon group elements, 0.9-1.2 Msun of iron group elements, and are essentially carbon-free. The ejecta have a composite morphology, are chemically stratified, and display a modest amount of intrinsic asymmetry. The innermost layers are slightly egg-shaped with the axis ratio ~1.2-1.3 and dominated by the products of silicon burning. This central region is surrounded by a shell of silicon-group elements. The outermost layers of ejecta are highly inhomogeneous and contain products of incomplete oxygen burning with only small admixture of unburned stellar material. The explosion energies are ~1.3-1.5 10^51 erg.Comment: ApJ in press; 21 pages, 36 figures at reduced resolution; high resolution version available at http://flash.uchicago.edu/~tomek/Papers/DFD_I_r2.pd

    The Thermonuclear Explosion Of Chandrasekhar Mass White Dwarfs

    Get PDF
    The flame born in the deep interior of a white dwarf that becomes a Type Ia supernova is subject to several instabilities. We briefly review these instabilities and the corresponding flame acceleration. We discuss the conditions necessary for each of the currently proposed explosion mechanisms and the attendant uncertainties. A grid of critical masses for detonation in the range 10710^7 - 2×1092 \times 10^9 g cm−3^{-3} is calculated and its sensitivity to composition explored. Prompt detonations are physically improbable and appear unlikely on observational grounds. Simple deflagrations require some means of boosting the flame speed beyond what currently exists in the literature. ``Active turbulent combustion'' and multi-point ignition are presented as two plausible ways of doing this. A deflagration that moves at the ``Sharp-Wheeler'' speed, 0.1gefft0.1 g_{\rm eff} t, is calculated in one dimension and shows that a healthy explosion is possible in a simple deflagration if the front moves with the speed of the fastest floating bubbles. The relevance of the transition to the ``distributed burning regime'' is discussed for delayed detonations. No model emerges without difficulties, but detonation in the distributed regime is plausible, will produce intermediate mass elements, and warrants further study.Comment: 28 pages, 4 figures included, uses aaspp4.sty. Submitted to Ap

    On the Evolution of Thermonuclear Flames on Large Scales

    Get PDF
    The thermonuclear explosion of a massive white dwarf in a Type Ia supernova explosion is characterized by vastly disparate spatial and temporal scales. The extreme dynamic range inherent to the problem prevents the use of direct numerical simulation and forces modelers to resort to subgrid models to describe physical processes taking place on unresolved scales. We consider the evolution of a model thermonuclear flame in a constant gravitational field on a periodic domain. The gravitational acceleration is aligned with the overall direction of the flame propagation, making the flame surface subject to the Rayleigh-Taylor instability. The flame evolution is followed through an extended initial transient phase well into the steady-state regime. The properties of the evolution of flame surface are examined. We confirm the form of the governing equation of the evolution suggested by Khokhlov (1995). The mechanism of vorticity production and the interaction between vortices and the flame surface are discussed. The results of our investigation provide the bases for revising and extending previous subgrid-scale model.Comment: 15 pages, 22 postscript figures. Accepted for publication by the Astrophysical Journal. High resolution figures can be found at http://flash.uchicago.edu/~zhang/research_paper.htm

    A Physical Model for SN 2001ay, a normal, bright, extremely slowly declining Type Ia supernova

    Get PDF
    We present a study of the peculiar Type Ia supernova 2001ay (SN 2001ay). The defining features of its peculiarity are: high velocity, broad lines, and a fast rising light curve, combined with the slowest known rate of decline. It is one magnitude dimmer than would be predicted from its observed value of Delta-m15, and shows broad spectral features. We base our analysis on detailed calculations for the explosion, light curves, and spectra. We demonstrate that consistency is key for both validating the models and probing the underlying physics. We show that this SN can be understood within the physics underlying the Delta-m15 relation, and in the framework of pulsating delayed detonation models originating from a Chandrasekhar mass, white dwarf, but with a progenitor core composed of 80% carbon. We suggest a possible scenario for stellar evolution which leads to such a progenitor. We show that the unusual light curve decline can be understood with the same physics as has been used to understand the Delta-m15 relation for normal SNe Ia. The decline relation can be explained by a combination of the temperature dependence of the opacity and excess or deficit of the peak luminosity, alpha, measured relative to the instantaneous rate of radiative decay energy generation. What differentiates SN 2001ay from normal SNe Ia is a higher explosion energy which leads to a shift of the Ni56 distribution towards higher velocity and alpha < 1. This result is responsible for the fast rise and slow decline. We define a class of SN 2001ay-like SNe Ia, which will show an anti-Phillips relation.Comment: 35 pages, 14 figures, ApJ, in pres

    SN 2005hj: Evidence for Two Classes of Normal-Bright SNe Ia and Implications for Cosmology

    Full text link
    HET Optical spectra covering the evolution from about 6 days before to about 5 weeks after maximum light and the ROTSE-IIIb unfiltered light curve of the "Branch-normal" Type Ia Supernova SN 2005hj are presented. The host galaxy shows HII region lines at redshift of z=0.0574, which puts the peak unfiltered absolute magnitude at a somewhat over-luminous -19.6. The spectra show weak and narrow SiII lines, and for a period of at least 10 days beginning around maximum light these profiles do not change in width or depth and they indicate a constant expansion velocity of ~10,600 km/s. We analyzed the observations based on detailed radiation dynamical models in the literature. Whereas delayed detonation and deflagration models have been used to explain the majority of SNe Ia, they do not predict a long velocity plateau in the SiII minimum with an unvarying line profile. Pulsating delayed detonations and merger scenarios form shell-like density structures with properties mostly related to the mass of the shell, M_shell, and we discuss how these models may explain the observed SiII line evolution; however, these models are based on spherical calculations and other possibilities may exist. SN 2005hj is consistent with respect to the onset, duration, and velocity of the plateau, the peak luminosity and, within the uncertainties, with the intrinsic colors for models with M_shell=0.2 M_sun. Our analysis suggests a distinct class of events hidden within the Branch-normal SNe Ia. If the predicted relations between observables are confirmed, they may provide a way to separate these two groups. We discuss the implications of two distinct progenitor classes on cosmological studies employing SNe Ia, including possible differences in the peak luminosity to light curve width relation.Comment: ApJ accepted, 31 page

    Maximum Brightness and Post-Maximum Decline of Light Curves of SN~Ia: A Comparison of Theory and Observations

    Get PDF
    We compare the observed correlations between the maximum brightness, postmaximum decline rate and color at maximum light of Type Ia supernovae (SN Ia) with model predictions. The observations are based on a total of 40 SN Ia with 29 SN of the Calan Tololo Supernova Search and 11 local SN which cover a range of 2 mag in the absolute visual brightness. The observed correlations are not tight, one dimensional relations. Supernovae with the same postmaximum decline or the same color have a spread in visual magnitude of about 0.7 mag. The dispersion in the color-magnitude relation may result from uncertainties in the distance determinations or the interstellar reddening within the host galaxy. The dispersion in the decline rate-magnitude relation suggests that an intrinsic spread in the supernova properties exists that cannot be accounted for by any single relation between visual brightness and postmaximum decline. Theoretical correlations are derived from a grid of models which encompasses delayed detonations, pulsating delayed detonations, the merging scenario and helium detonations. We find that the observed correlations can be understood in terms of explosions of Chandrasekhar mass white dwarfs. Our models show an intrinsic spread in the relations of about 0.5 mag in the maximum brightness and about 0.1 mag in the B-V color. Our study provides strong evidence against the mechanism of helium detonation for subluminous, red SN Ia.Comment: 7 pages, 3 figures, macros ''aaspp.sty'. LaTeX Style. Astrophysical Journal Letters, submitted Jul. 1995, revised Aug. 1995, resubmitted Sep. 199

    Constraints On The Delayed Transition to Detonation in Type Ia Supernovae

    Full text link
    We investigate the possibility of a delayed detonation in a type Ia supernova under the assumption that the transition to detonation is triggered by turbulence only. Our discussion is based on the Zeldovich mechanism and suggests that typical turbulent velocities present during the explosion are not strong enough to allow this transition to occur. Although we are able to show that in carbon-rich matter (e.g., X(12X(^{12}C)=0.75) = 0.75) the possibility of a deflagration to detonation transition (DDT) is enhanced, even in this case the turbulent velocities needed are larger than the expected value of uâ€Č(L)≈107cms−1u'(L) \approx 10^7 {cm s}^{-1} on a length-scale of L≈106L \approx 10^6 cm. Thus we conclude that a DDT may not be a common event during a thermonuclear explosion of a Chandrasekhar-mass white dwarf.Comment: 18 pages, 5 figures, accepted for publication in the Ap
    • 

    corecore