159 research outputs found
Fusion of Surface Ceilometer Data and Satellite Cloud Retrievals in 2D Mesh Interpolating Model with Clustering
For accurate cloud ceiling information, a data fusion approach is proposed that utilizes satellite data to extend surface station information to much wider areas. Cloud base height (CBH) retrieved from satellite observations provides for much larger spatial coverage and higher resolution. The direct comparison of GOES-16 CBH with surface station ceiling yields a local bias that has to be corrected for in the initial GOES-16 cloud base information. This sparsely sampled bias correction presents an irregular 2D mesh of control points, which is then interpolated by constructing a continuous smooth field using polyharmonic splines. The influence of remote stations is restricted by grouping the control points into clusters depending on an effective distance. This cluster-based approach allows for constructing separate spline surfaces corresponding to physically different clouds. The obtained continuous bias correction function is then applied to the entire GOES-16 pixel level CBH except for areas far away from surface stations in data sparse regions such as offshore. The described method is currently being tested using daytime-only observations over the central and eastern United States. Overall, this approach has potential to provide more accurate, high spatial resolution cloud ceiling information for the aviation community
A Supplementary Clear-Sky Snow and Ice Recognition Technique for CERES Level 2 Products
Identification of clear-sky snow and ice is an important step in the production of cryosphere radiation budget products, which are used in the derivation of long-term data series for climate research. In this paper, a new method of clear-sky snow/ice identification for Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. The algorithm's goal is to enhance the identification of snow and ice within the Clouds and the Earth's Radiant Energy System (CERES) data after application of the standard CERES scene identification scheme. The input of the algorithm uses spectral radiances from five MODIS bands and surface skin temperature available in the CERES Single Scanner Footprint (SSF) product. The algorithm produces a cryosphere rating from an aggregated test: a higher rating corresponds to a more certain identification of the clear-sky snow/ice-covered scene. Empirical analysis of regions of interest representing distinctive targets such as snow, ice, ice and water clouds, open waters, and snow-free land selected from a number of MODIS images shows that the cryosphere rating of snow/ice targets falls into 95% confidence intervals lying above the same confidence intervals of all other targets. This enables recognition of clear-sky cryosphere by using a single threshold applied to the rating, which makes this technique different from traditional branching techniques based on multiple thresholds. Limited tests show that the established threshold clearly separates the cryosphere rating values computed for the cryosphere from those computed for noncryosphere scenes, whereas individual tests applied consequently cannot reliably identify the cryosphere for complex scenes
- …