268 research outputs found

    Macroscopic objects in quantum mechanics: A combinatorial approach

    Full text link
    Why we do not see large macroscopic objects in entangled states? There are two ways to approach this question. The first is dynamic: the coupling of a large object to its environment cause any entanglement to decrease considerably. The second approach, which is discussed in this paper, puts the stress on the difficulty to observe a large scale entanglement. As the number of particles n grows we need an ever more precise knowledge of the state, and an ever more carefully designed experiment, in order to recognize entanglement. To develop this point we consider a family of observables, called witnesses, which are designed to detect entanglement. A witness W distinguishes all the separable (unentangled) states from some entangled states. If we normalize the witness W to satisfy |tr(W\rho)| \leq 1 for all separable states \rho, then the efficiency of W depends on the size of its maximal eigenvalue in absolute value; that is, its operator norm ||W||. It is known that there are witnesses on the space of n qbits for which ||W|| is exponential in n. However, we conjecture that for a large majority of n-qbit witnesses ||W|| \leq O(\sqrt{n logn}). Thus, in a non ideal measurement, which includes errors, the largest eigenvalue of a typical witness lies below the threshold of detection. We prove this conjecture for the family of extremal witnesses introduced by Werner and Wolf (Phys. Rev. A 64, 032112 (2001)).Comment: RevTeX, 14 pages, some additions to the published version: A second conjecture added, discussion expanded, and references adde

    A generalization of the Kullback-Leibler divergence and its properties

    Full text link
    A generalized Kullback-Leibler relative entropy is introduced starting with the symmetric Jackson derivative of the generalized overlap between two probability distributions. The generalization retains much of the structure possessed by the original formulation. We present the fundamental properties including positivity, metricity, concavity, bounds and stability. In addition, a connection to shift information and behavior under Liouville dynamics are discussed.Comment: revised, 10 page

    Simple observations concerning black holes and probability

    Full text link
    It is argued that black holes and the limit distributions of probability theory share several properties when their entropy and information content are compared. In particular the no-hair theorem, the entropy maximization and holographic bound, and the quantization of entropy of black holes have their respective analogues for stable limit distributions. This observation suggests that the central limit theorem can play a fundamental role in black hole statistical mechanics and in a possibly emergent nature of gravity.Comment: 6 pages Latex, final version. Essay awarded "Honorable Mention" in the Gravity Research Foundation 2009 Essay Competitio

    Geometric Microcanonical Thermodynamics for Systems with First Integrals

    Get PDF
    In the general case of a many-body Hamiltonian system, described by an autonomous Hamiltonian HH, and with K0K\geq 0 independent conserved quantities, we derive the microcanonical thermodynamics. By a simple approach, based on the differential geometry, we derive the microcanonical entropy and the derivatives of the entropy with respect to the conserved quantities. In such a way, we show that all the thermodynamical quantities, as the temperature, the chemical potential or the specific heat, are measured as a microcanonical average of the appropriate microscopic dynamical functions that we have explicitly derived. Our method applies also in the case of non-separable Hamiltonians, where the usual definition of kinetic temperature, derived by the virial theorem, does not apply.Comment: 4 page

    Macroscopic thermodynamics of equilibrium characterized by power-law canonical distributions

    Full text link
    Macroscopic thermodynamics of equilibrium is constructed for systems obeying power-law canonical distributions. With this, the connection between macroscopic thermodynamics and microscopic statistical thermodynamics is generalized. This is complementary to the Gibbs theorem for the celebrated exponential canonical distributions of systems in contact with a heat bath. Thereby, a thermodynamic basis is provided for power-law phenomena ubiquitous in nature.Comment: 12 page

    Computing the entropy of user navigation in the web

    Get PDF
    Navigation through the web, colloquially known as "surfing", is one of the main activities of users during web interaction. When users follow a navigation trail they often tend to get disoriented in terms of the goals of their original query and thus the discovery of typical user trails could be useful in providing navigation assistance. Herein, we give a theoretical underpinning of user navigation in terms of the entropy of an underlying Markov chain modelling the web topology. We present a novel method for online incremental computation of the entropy and a large deviation result regarding the length of a trail to realize the said entropy. We provide an error analysis for our estimation of the entropy in terms of the divergence between the empirical and actual probabilities. We then indicate applications of our algorithm in the area of web data mining. Finally, we present an extension of our technique to higher-order Markov chains by a suitable reduction of a higher-order Markov chain model to a first-order one

    A Geometric, Dynamical Approach to Thermodynamics

    Get PDF
    We present a geometric and dynamical approach to the micro-canonical ensemble of classical Hamiltonian systems. We generalize the arguments in \cite{Rugh} and show that the energy-derivative of a micro-canonical average is itself micro-canonically observable. In particular, temperature, specific heat and higher order derivatives of the entropy can be observed dynamically. We give perturbative, asymptotic formulas by which the canonical ensemble itself can be reconstructed from micro-canonical measurements only. In a purely micro-canonical approach we rederive formulas by Lebowitz et al \cite{LPV}, relating e.g. specific heat to fluctuations in the kinetic energy. We show that under natural assumptions on the fluctuations in the kinetic energy the micro-canonical temperature is asymptotically equivalent to the standard canonical definition using the kinetic energy.Comment: 7 pages, LaTeX, uses RevTex. New sections and examples using fluctuations in the kinetic energy adde

    On quantum microcanonical equilibrium

    Get PDF
    A quantum microcanonical postulate is proposed as a basis for the equilibrium properties of small quantum systems. Expressions for the corresponding density of states are derived, and are used to establish the existence of phase transitions for finite quantum systems. A grand microcanonical ensemble is introduced, which can be used to obtain new rigorous results in quantum statistical mechanics.Accepted versio

    Entropy and density of states from isoenergetic nonequilibrium processes

    Full text link
    Two identities in statistical mechanics involving entropy differences (or ratios of density of states) at constant energy are derived. The first provides a nontrivial extension of the Jarzynski equality to the microcanonical ensemble [C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)], which can be seen as a ``fast-switching'' version of the adiabatic switching method for computing entropies [M. Watanabe, W. P. Reinhardt, Phys. Rev. Lett. 65, 3301 (1990)]. The second is a thermodynamic integration formula analogous to a well-known expression for free energies, and follows after taking the quasistatic limit of the first. Both identities can be conveniently used in conjunction with a scaling relation (herein derived) that allows one to extrapolate measurements taken at a single energy to a wide range of energy values. Practical aspects of these identities in the context of numerical simulations are discussed.Comment: 5 pages, no figure

    Transport properties in chaotic and non-chaotic many particles systems

    Full text link
    Two deterministic models for Brownian motion are investigated by means of numerical simulations and kinetic theory arguments. The first model consists of a heavy hard disk immersed in a rarefied gas of smaller and lighter hard disks acting as a thermal bath. The second is the same except for the shape of the particles, which is now square. The basic difference of these two systems lies in the interaction: hard core elastic collisions make the dynamics of the disks chaotic whereas that of squares is not. Remarkably, this difference is not reflected in the transport properties of the two systems: simulations show that the diffusion coefficients, velocity correlations and response functions of the heavy impurity are in agreement with kinetic theory for both the chaotic and the non-chaotic model. The relaxation to equilibrium, however, is very sensitive to the kind of interaction. These observations are used to reconsider and discuss some issues connected to chaos, statistical mechanics and diffusion.Comment: 23 pgs with 8 Figure
    corecore