2 research outputs found

    Genomic insights into rapid speciation within the world’s largest tree genus Syzygium

    Get PDF
    Species radiations, despite immense phenotypic variation, can be difficult to resolve phylogenetically when genetic change poorly matches the rapidity of diversification. Genomic potential furnished by palaeopolyploidy, and relative roles for adaptation, random drift and hybridisation in the apportionment of genetic variation, remain poorly understood factors. Here, we study these aspects in a model radiation, Syzygium, the most species-rich tree genus worldwide. Genomes of 182 distinct species and 58 unidentified taxa are compared against a chromosome-level reference genome of the sea apple, Syzygium grande. We show that while Syzygium shares an ancient genome doubling event with other Myrtales, little evidence exists for recent polyploidy events. Phylogenomics confirms that Syzygium originated in Australia-New Guinea and diversified in multiple migrations, eastward to the Pacific and westward to India and Africa, in bursts of speciation visible as poorly resolved branches on phylogenies. Furthermore, some sublineages demonstrate genomic clines that recapitulate cladogenetic events, suggesting that stepwise geographic speciation, a neutral process, has been important in Syzygium diversification

    Genomic insights into rapid speciation within the world’s largest tree genus [PREPRINT].

    No full text
    Species radiations have long fascinated biologists, but the contribution of adaptation to observed diversity and speciation is still an open question. Here, we explore this question using the clove genus, Syzygium, the world’s largest genus of tree species comprising approximately 1200 species. We dissect Syzygium diversity through shotgun sequencing of 182 distinct species and 58 additional as-yet unidentified taxa, and assess their genetic diversity against a chromosome-level reference genome of the sea apple, Syzygium grande. We show that Syzygium grande shares a whole genome duplication (WGD) event with other Myrtales. Genomic analyses confirm that Syzygium originated in Sahul (Australia-New Guinea), and later diversified eastward to the Hawaiian Islands and westward in multiple independent migration events. The migrations were associated with bursts of speciation events, visible by poorly resolved branches on phylogenies and networks, some of which were likely confounded by incomplete lineage sorting. Clinal genomic variation in some sublineages follows phylogenetic progression, which coupled with sympatric occurrences of distantly related species suggests that both geographic and ecological speciation have been important in the diversification of Syzygium. Together, these results point to a mixture of both neutral and adaptive drivers having contributed to the radiation of the genus
    corecore