23 research outputs found

    Enhanced optical limiting performance in phthalocyanine-quantum dot nanocomposites by free-carrier absorption mechanism

    Get PDF
    Enhanced nonlinear optical properties (in dimethyl sulphoxide) is observed for 2(3),9(10),16(17),23(24)-tetrakis-(4-aminophenoxy)phthalocyaninato indium(III) chloride (InPc) when covalently linked to CdSe/ZnS or CdSe quantum dots (QDs). The experimental nonlinear optical parameters were obtained from Z-Scan measurements. Contributions from two-photon absorption (2PA) due to the InPc, and free-carrier absorption (FCA) by QDS have been identified as the main factors responsible for the enhanced optical limiting. The effective nonlinear absorption coefficient for InPc-CdSe/ZnS was found to be 700.0 cm/GW. The FCA cross-sections for InPc-CdSe/ZnS and InPc-CdSe composites were found to be 1.52 × 10−19 and 6.00 × 10−20 cm2 respectively. A much lower limiting threshold of 92 mJ cm−2 was observed for InPc-CdSe/ZnS nanocomposite, hence, making it suitable for use as optical limiting material. Density Functional Theory (DFT) calculations on similar phthalocyanine-quantum dots system was modeled in order to explain the enhancement in the observed nonlinear optical properties of the Pc in the presence of the QDs. The experimentally determined nonlinear optical properties are well within the range of the DFT calculated properties

    Photophysical and nonlinear optical characteristics of pyridyl substituted phthalocyanine-detonation nanodiamond conjugated systems in solution

    Get PDF
    In this study photophysical, nonlinear absorption and optical limiting properties of detonation nanodiamonds (DNDs)-phthalocyanine nanoconjugate systems containing: 2,9(10),16(17),23(24)-tetrakis-(4-pyridyloxy) phthalocyaninato (H2TPPc), 2,9(10),16(17),23(24)-tetrakis-(4-pyridyloxy) phthalocyanato zinc(II) (ZnTPPc) and 2,9(10),16(17),23(24)-tetrakis-(4-pyridyloxy) phthalocyanato silicon(IV) hydroxide (Si(OH)2TPPc), were investigated in dimethylsulfoxide solution. Pcs were non-covalently linked to nanondiamonds (also covalently linked for Si(OH)2TPPc) and investigated using 532 nm laser excitation at 10 ns pulses for their optical limiting properties. Complexes that have higher triplet state absorption also possessed enhanced nonlinear optical behaviour following reverse saturable absorption mechanism. Superior optical performance is observed when the Pcs had a central metal with axial ligands conjugated to DNDs in solution. Nanoconjugate of DNDs-Si(OH)2TPPc and respective Pc in solution gave the highest imaginary third-order susceptibility (Im[X(3)]) and hyperpolarizability (γ) at 2.91 × 10−8 and 3.17 × 10−8 esu and 3.88 × 10−28 and 4.22 × 10−28 esu, respectively, with Ilim value of 0.47 and 0.39 J·cm−2

    Characterization of nickel tetrahydroxy phthalocyanine complexes and the electrocatalytic oxidation of 4-chlorophenol

    Get PDF
    This work reports on the use of nickel(II) tetrahydroxy (NiPc(OH)4) and (poly-Ni(OH)Pc(OH)4) phthalocyanine complexes as films on ordinary poly graphite electrode (OPGE) for the electrochemical oxidation of 4-chlorophenol (4-CP). The NiPc(OH)4 film was electrotransformed to Ni(OH)Pc(OH)4 film in aqueous 0.1 M NaOH solution to the ‘O–Ni–O oxo’ bridge form. The result showed that the Ni(OH)Pc(OH)4 film on OPGE was more electroactive in terms of increase in current and less catalytic in terms of potential compared to the adsorbed NiPc(OH)4 on OPGE. The reactivity of the two molecules was explained by theoretical calculations. The energies of the frontier orbitals of NiPc(OH)4, Ni(OH)Pc(OH)4 and 4-chlorophenol were calculated using density functional theory (DFT) method. The inter molecular hardness (η) and donor–acceptor hardness (ηDA) of Ni(OH)Pc(OH)4, NiPc(OH)4, Ni(OH)Pc(OH)4/4-chlorophenol and NiPc(OH)4/4-chlorophenol were estimated. The Ni(OH)Pc(OH)4, showed stronger interaction with 4-chlorophenol than NiPc(OH)4. DFT method was also used to model IR and Raman spectrum of H2Pc(OH)4 and NiPc(OH)4

    Photooxidation of 4-chlorophenol sensitized by lutetium tetraphenoxy phthalocyanine anchored on electrospun polystyrene polymer fiber

    Get PDF
    An electrospun polystyrene (PS) fiber incorporating tetraphenoxy phthalocyanine complex of lutetium (LuTPPc/PS) as a photosensitizer was applied for the degradation of 4-chlorophenol in aqueous solution in the presence of visible light. The photocatalytic activity of the LuTPPc in the fiber was compared to that of zinc phthalocyanine (ZnPc) incorporated into the PS fiber, and the former showed higher activity. UV–Vis spectral changes of sample solutions indicated transformation of the analyte with first order kinetics and half-lives that are within one and half hours for LuTPPc/PS. Products identified from the spectral changes and gas chromatography were benzoquinone, hydroquinone and 4,4′-dihydroxydiphenol suggesting that the photodegradation of 4-chlorophenol was through both Types I and II mechanisms

    Synthesis, photophysical and nonlinear optical behavior of neodymium based trisphthalocyanine

    Get PDF
    Tris-{1(4),8(11),15(18),22(25)-tetra(4-tertbutylphenoxy) phthalocyaninato} dineodymium (III) was synthesised and its nonlinear optical and fluorescence behavior was studied. Low fluorescence quantum yield (ФF = 0.03) was obtained with a fluorescence lifetime τF = 4.31 ns for this complex. Nonlinear optical parameters for the complex were determined using the Z-scan technique and the values of Im[χ(3)] and γ were of the order of 10−10 and 10−28 esu, respectively. Square wave voltammetry revealed three reduction and two oxidation couples for the complex

    Photophysical and nonlinear optical properties of the positional isomers of 4-(4-tertbutylphenoxy) substituted cobalt, nickel and copper phthalocyanines

    Get PDF
    This paper reports on the third order nonlinear optical properties of cobalt, nickel and tetrakis(4- terbutylphenoxy)phthalocyaninatocopper(II) isomers, using the Z-scan technique. Metal-free isomers were found to have high nonlinear absorption coefficient (β) values compared to the metalated isomers. Metal-free C2v isomer was found to have the highest β value of 1.52 × 10− 10 mMW− 1 in THF. All the metal-free and metal phthalocyanine isomers nonlinear properties were found to be dependent on the singlet state absorption. Imaginary second order nonlinear hyperpolarizability (Im[γ]), ground state cross section (σg), excited states cross sections (σs and σt) and two photon absorption (TPA) cross section (σTPA) values are reported in this work. The five-energy level model rate equations were used to model the nonlinear response and absorption cross sections

    Third order nonlinear optical properties of phthalocyanines in the presence nanomaterials and in polymer thin films

    Get PDF
    Third order nonlinear optical properties were determined for phthalocyanine complexes 1–10 containing In, Ga and Zn central metals and tetra- or octa-substituted with benzyloxyphenoxy, phenoxy, tert-butylphenoxy and amino groups at peripheral or non-peripheral positions. The phthalocyanines were embedded in poly (methyl methacrylate) polymer in the presence of CdTe quantum dots. All complexes 1–10 were studied in the presence of CdTe quantum dots and embedded in poly (methyl methacrylate) to form thin films. Complex 3 tetrasubstituted with tert-butylphenoxy groups at non-peripheral positions was also studied in the presence of CdS, CdSe quantum dots, fullerenes, single walled carbon nanotubes. Third order nonlinear optical parameters generally increase for Pcs in the presence of CdTe quantum dots

    Exploiting Click Chemistry for the Covalent Immobilization of Tetra (4-Propargyloxyphenoxy) Metallophthalocyanines onto Phenylazide-Grafted Gold Surfaces

    Get PDF
    In this study, tetra-(4-propargyloxy)phenoxy phthalocyanines (MTPrOPhOPc) were covalently immobilized as thin films onto gold surfaces via click reaction. The gold electrode surfaces were pre-functionalized with phenylazide (Au-PAz) thin film using in-situ diazonium generation followed by electrografting. Copper (I) catalyzed alkynyl-azide cycloaddition (CuCAAC) reaction was used to covalently immobilize the MTPrOPhOPcs onto the gold electrode surfaces to form Au-PAz-MTPrOPhOPc. The MTPrOPhOPcs were further studied for their electrocatalytic and electroanalytical properties towards the detection of hydrogen peroxide. Au-PAz-MTPrOPhOPc exhibited good reproducibility and stability in various electrolyte conditions. Electrochemical and spectroscopic surface characterization of the functionalized gold electrode surfaces confirmed the presence of the phenylazide and MTPrOPhOPc thin monolayer films. The excellent electroanalysis of hydrogen peroxide with the limit of detection (LoD) and limit of quantification (LoQ) in the μM range was obtained. The electrocatalytic reduction peaks for H2O2 were observed at −0.37 V for Au-PAz-Mn(OAc)TPrOPhOPc and −0.31 V for Au-PAz-CoTPrOPhOPc when Ag|AgCl pseudo-reference electrode was used. The Au-PAz-Mn(OAc)TPrOPhOPc and Au-PAz-CoTPrOPhOPc gold electrode surfaces showed good sensitivity and reproducibility towards the electrocatalytic reduction of hydrogen peroxide in pH 7.4 phosphate buffer solution

    Spectroscopic and nonlinear optical properties of alkyl thio substituted binuclear phthalocyanines

    Get PDF
    This work presents the spectroscopic and nonlinear optical properties of metal free binuclear and monomeric 4- (pentylthio)phthalocyanine and cobalt 4,5-(bipentylthio)phthalocyanine. Second order nonlinear absorption coefficient (β) values for the complexes were determined and compared
    corecore