23 research outputs found

    Validity and reliability of a photoelectric cells system for the evaluation of change of direction and lateral jumping abilities in collegiate basketball athletes

    Get PDF
    The validity and reliability of the Optojump system were investigated for jumping height and flight time in vertical jump tests. Conversely, the purpose of the present study was to investigate the validity and reliability of the Optojump system for measuring contact time and lateral displacement in change of direction and lateral jump tests. Thirty basketball collegiate athletes were tested on two 10 m sprints with a 60° (COD60) or 180° (COD180) change of direction, lateral controlled (CLRJ) and maximal (MLRJ) rebound jump, and lateral countermovement (LCMJ) and squat (LSJ) jump with the concomitant use of two force plates and the Optojump system for the measurement of contact time in COD60, COD180, CLRJ, MLRJ, and lateral jumping distance in all the lateral jump tests. Almost perfect coefficients (r ≥ 0.95) emerged for contact time in COD60, COD180, CLRJ, MLRJ, although a systematic bias was found for COD60 (-0.01 s). Good-to-excellent reliability was found for almost all the measurements of contact time and lateral jumping distance for change of direction and lateral jump tests. Therefore, the use of Optojump system for testing change of direction and lateral jumping abilities should be executed with caution, avoiding misinterpretation of data

    Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release

    Get PDF
    Micelles are colloidal particles with a size around 5–100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use in patients with breast cancer. Micelle-based drug delivery, however, can be improved in different ways. Targeting ligands can be attached to the micelles which specifically recognize and bind to receptors overexpressed in tumor cells, and chelation or incorporation of imaging moieties enables tracking micelles in vivo for biodistribution studies. Moreover, pH-, thermo-, ultrasound-, or light-sensitive block copolymers allow for controlled micelle dissociation and triggered drug release. The combination of these approaches will further improve specificity and efficacy of micelle-based drug delivery and brings the development of a ‘magic bullet’ a major step forward
    corecore