7 research outputs found

    Unsupervised Multimodal Deepfake Detection Using Intra- and Cross-Modal Inconsistencies

    Full text link
    Deepfake videos present an increasing threat to society with potentially negative impact on criminal justice, democracy, and personal safety and privacy. Meanwhile, detecting deepfakes, at scale, remains a very challenging tasks that often requires labeled training data from existing deepfake generation methods. Further, even the most accurate supervised learning, deepfake detection methods do not generalize to deepfakes generated using new generation methods. In this paper, we introduce a novel unsupervised approach for detecting deepfake videos by measuring of intra- and cross-modal consistency among multimodal features; specifically visual, audio, and identity features. The fundamental hypothesis behind the proposed detection method is that since deepfake generation attempts to transfer the facial motion of one identity to another, these methods will eventually encounter a trade-off between motion and identity that enviably leads to detectable inconsistencies. We validate our method through extensive experimentation, demonstrating the existence of significant intra- and cross- modal inconsistencies in deepfake videos, which can be effectively utilized to detect them with high accuracy. Our proposed method is scalable because it does not require pristine samples at inference, generalizable because it is trained only on real data, and is explainable since it can pinpoint the exact location of modality inconsistencies which are then verifiable by a human expert.Comment: 11 pages, 3 figures, 2 table

    Using Visual Cropping to Enhance Fine-Detail Question Answering of BLIP-Family Models

    Full text link
    Visual Question Answering is a challenging task, as it requires seamless interaction between perceptual, linguistic, and background knowledge systems. While the recent progress of visual and natural language models like BLIP has led to improved performance on this task, we lack understanding of the ability of such models to perform on different kinds of questions and reasoning types. As our initial analysis of BLIP-family models revealed difficulty with answering fine-detail questions, we investigate the following question: Can visual cropping be employed to improve the performance of state-of-the-art visual question answering models on fine-detail questions? Given the recent success of the BLIP-family models, we study a zero-shot and a fine-tuned BLIP model. We define three controlled subsets of the popular VQA-v2 benchmark to measure whether cropping can help model performance. Besides human cropping, we devise two automatic cropping strategies based on multi-modal embedding by CLIP and BLIP visual QA model gradients. Our experiments demonstrate that the performance of BLIP model variants can be significantly improved through human cropping, and automatic cropping methods can produce comparable benefits. A deeper dive into our findings indicates that the performance enhancement is more pronounced in zero-shot models than in fine-tuned models and more salient with smaller bounding boxes than larger ones. We perform case studies to connect quantitative differences with qualitative observations across question types and datasets. Finally, we see that the cropping enhancement is robust, as we gain an improvement of 4.59% (absolute) in the general VQA-random task by simply inputting a concatenation of the original and gradient-based cropped images. We make our code available to facilitate further innovation on visual cropping methods for question answering.Comment: 16 pages, 5 figures, 7 table

    Shadow Datasets, New challenging datasets for Causal Representation Learning

    Full text link
    Discovering causal relations among semantic factors is an emergent topic in representation learning. Most causal representation learning (CRL) methods are fully supervised, which is impractical due to costly labeling. To resolve this restriction, weakly supervised CRL methods were introduced. To evaluate CRL performance, four existing datasets, Pendulum, Flow, CelebA(BEARD) and CelebA(SMILE), are utilized. However, existing CRL datasets are limited to simple graphs with few generative factors. Thus we propose two new datasets with a larger number of diverse generative factors and more sophisticated causal graphs. In addition, current real datasets, CelebA(BEARD) and CelebA(SMILE), the originally proposed causal graphs are not aligned with the dataset distributions. Thus, we propose modifications to them

    A Survey of Unsupervised Deep Domain Adaptation

    No full text
    corecore