440 research outputs found
Measurement of the - mixing angle in and beams with GAMS- Setup
The results of mixing angle measurement for , mesons generated
in charge exchange reactions with and beams are preseneted.
When the , mesons are described in nonstrange(NS)--strange(S)
quark basis the and beams allow to study and
parts of the meson wave function. The cross section ratio at
(GeV/c) in the beam is , results in mixing angle . For
beam the ratio is . It was found that
gluonium content in is . The
experiment was carried out with GAMS-4 Setup.Comment: 6 pages, 4 figures, 1 table, to be submitted in European physical
journal C. Minor changes, the Bibliography extende
Study of the system in the mass range up to 1200 MeV
The reaction has been studied with GAMS-2000
spectrometer in the secondary 38 GeV/c -beam of the IHEP U-70
accelerator. Partial wave analysis of the reaction has been performed in the
mass range up to 1200 MeV. The -meson is seen as a sharp
peak in S-wave. The -dependence of production cross section has
been studied. Dominant production of the at a small transfer
momentum confirms the hypothesis of Achasov and Shestakov about significant
contribution of the exchange () in the mechanism
of meson production in -channel of the reaction.Comment: 4 pages, 3 figures, talk given at HADRON'9
Measurement of the decay form factors in the OKA experiment
A precise measurement of the vector and axial-vector form factors difference
in the decay is presented.
About 95K events of are selected in
the OKA experiment. The result is .
Both errors are smaller than in the previous measurements.Comment: 9 pages, 8 figure
Optimization of the drainage system of overburden dumps using geofiltration modeling
The article describes the assessment of the predicted water flows at the site of the projected rock dumps, which was carried out using geofiltration modeling. When developing the model, we used actual data on capacities, filtration coefficients and water capacity, roof and sole marks of the selected aquifers, precipitation infiltration, as well as the projected dumps are located on the slope surfac
Π Π°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΠΌΠΈΠΊΡΠΎΠ½Π°ΡΠΎΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π΄Π»Ρ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠΈ ΠΊΡΠΎΠ²ΠΎΠΎΠ±ΡΠ°ΡΠ΅Π½ΠΈΡ
Introduction. Support systems currently used in modern cardiac surgery to provide partial or complete, permanent or temporary replacement of cardiac function are frequently characterized by large dimensions, thus requiring major surgical interventions. Low invasiveness can be ensured by reducing the size of the implanted part of such systems, allowing these devices to be inserted through the femoral artery.Aim. Development of a minimally invasive micropump system to support blood circulation.Materials and methods. Based on the analysis of implementation of micropump circulatory support systems (MCSS), the configuration, operational principles and main components of such a system were determined. When designing a micropump, as a unit defining the weight and size parameters of the entire system, numerical and experimental methods were used to optimize its flow path based on the condition of minimizing blood injury and thrombus formation. The lubrication and cooling system was developed by solving the thermodynamic problem of heat removal. The electronic control unit was developed on the basis of accumulated experience in the design and operation of control units for circulatory support systems.Results. A micropump with a diameter of 6.5 mm and a length of 43 mm with the required hydro- and hemodynamic parameters was designed. The device ensures minimal trauma and thrombus formation. The main MCSS parameters, as well as its main components (electric drives, lubrication and cooling systems), were defined. The configuration and operational principles of the electronic control unit (ECU), consisting in a microprocessor-based control system with feedback, were developed. The ECU built-in software manages the rotational speed of the electric drives of the micropump and coolant supply pump in the required range. In addition, the software is used to measure, display and register the MCSS operational parameters, as well as to monitor their operation in the required ranges and to exchange data between the ECU and the PC.Conclusion. All the necessary documentation for the MCSS nodes and components was prepared. These nodes and components ensure the hydro- and hemodynamic parameters required for the use of the developed minimally invasive micropump system. Future work will address the stages of MCSS assembly and debugging.ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅. Π ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΊΠ°ΡΠ΄ΠΈΠΎΡ
ΠΈΡΡΡΠ³ΠΈΠΈ Π΄Π»Ρ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΠ½ΠΎΠΉ ΠΈΠ»ΠΈ ΠΏΠΎΠ»Π½ΠΎΠΉ, ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π·Π°ΠΌΠ΅Π½Ρ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ΅ΡΠ΄ΡΠ° ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠΈ, ΠΈΠΌΠ΅ΡΡΠΈΠ΅ ΡΠ°Π·ΠΌΠ΅ΡΡ, ΡΡΠ΅Π±ΡΡΡΠΈΠ΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ΅ΡΡΠ΅Π·Π½ΠΎΠΉ Ρ
ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ. ΠΠ»Ρ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΠ°Π»ΠΎΠΉ ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΡΡΠΈ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠΌΠ΅Π½ΡΡΠΈΡΡ ΡΠ°Π·ΠΌΠ΅ΡΡ ΠΈΠΌΠΏΠ»Π°Π½ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ ΡΠ°ΡΡΠΈ ΡΠΈΡΡΠ΅ΠΌΡ, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ Π²Π²ΠΎΠ΄ΠΈΡΡ ΡΡΠΈ ΡΡΡΡΠΎΠΉΡΡΠ²Π° ΡΠ΅ΡΠ΅Π· Π±Π΅Π΄ΡΠ΅Π½Π½ΡΡ Π°ΡΡΠ΅ΡΠΈΡ.Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ. Π Π°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΠΌΠ°Π»ΠΎΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΠ½Π°ΡΠΎΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π΄Π»Ρ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠΈ ΠΊΡΠΎΠ²ΠΎΠΎΠ±ΡΠ°ΡΠ΅Π½ΠΈΡ.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ Π°Π½Π°Π»ΠΈΠ·Π° ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠΈ ΠΊΡΠΎΠ²ΠΎΠΎΠ±ΡΠ°ΡΠ΅Π½ΠΈΡ (ΠΠ‘ΠΠ) ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½ Π΅Π΅ ΡΠΎΡΡΠ°Π², ΠΏΡΠΈΠ½ΡΠΈΠΏ ΡΠ°Π±ΠΎΡΡ, ΡΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ Π΅Π΅ ΡΠ·Π»Ρ ΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ. ΠΡΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΌΠΈΠΊΡΠΎΠ½Π°ΡΠΎΡΠ° ΠΊΠ°ΠΊ ΡΠ·Π»Π°, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠ΅Π³ΠΎ ΠΌΠ°ΡΡΠΎΠ³Π°Π±Π°ΡΠΈΡΠ½ΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ Π²ΡΠ΅ΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΡΠΈΡΠ»Π΅Π½Π½ΡΠ΅ ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ Π΅Π³ΠΎ ΠΏΡΠΎΡΠΎΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΈΠ· ΡΡΠ»ΠΎΠ²ΠΈΡ ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΡΡΠ°Π²ΠΌΡ ΠΊΡΠΎΠ²ΠΈ ΠΈ ΡΡΠΎΠΌΠ±ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ. ΠΡΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠΌΠ°Π·ΠΊΠΈ ΠΈ ΠΎΡ
Π»Π°ΠΆΠ΄Π΅Π½ΠΈΡ ΡΠ΅ΡΠ°Π»Π°ΡΡ ΡΠ΅ΡΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ Π·Π°Π΄Π°ΡΠ° ΠΏΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΡΠ²ΠΎΠ΄Π° ΡΠ΅ΠΏΠ»Π°. ΠΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠΉ Π±Π»ΠΎΠΊ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠΏΡΡΠ° ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈ ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΠΈ Π±Π»ΠΎΠΊΠΎΠ² ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΡΡ
ΡΠΈΡΡΠ΅ΠΌ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΡΠΎΠ²ΠΎΠΎΠ±ΡΠ°ΡΠ΅Π½ΠΈΡ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π‘ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ ΠΌΠΈΠΊΡΠΎΠ½Π°ΡΠΎΡ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠΎΠΌ 6,5 ΠΌΠΌ ΠΈ Π΄Π»ΠΈΠ½ΠΎΠΉ 43 ΠΌΠΌ Ρ ΡΡΠ΅Π±ΡΠ΅ΠΌΡΠΌΠΈ Π³Π΅ΠΌΠΎ- ΠΈ Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΠΈΠΉ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΡ ΡΡΠ°Π²ΠΌΡ ΠΈ ΡΡΠΎΠΌΠ±ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΈ ΡΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½Ρ ΡΠ·Π»Ρ ΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ ΠΠ‘ΠΠ (ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Ρ, ΡΠΈΡΡΠ΅ΠΌΠ° ΡΠΌΠ°Π·ΠΊΠΈ ΠΈ ΠΎΡ
Π»Π°ΠΆΠ΄Π΅Π½ΠΈΡ). Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½ ΡΠΎΡΡΠ°Π² ΠΈ ΠΏΡΠΈΠ½ΡΠΈΠΏ ΡΠ°Π±ΠΎΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ Π±Π»ΠΎΠΊΠ° ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ (ΠΠΠ£), ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΠΏΡΠΎΡΠ΅ΡΡΠΎΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΠ‘ΠΠ Ρ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ ΡΠ²ΡΠ·ΡΡ. ΠΡΡΡΠΎΠ΅Π½Π½ΠΎΠ΅ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΠΎΠ΅ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΠΠ£ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΏΡΠ°Π²Π»ΡΡΡ ΡΠ°ΡΡΠΎΡΠΎΠΉ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄ΠΎΠ² ΠΌΠΈΠΊΡΠΎΠ½Π°ΡΠΎΡΠ° ΠΈ Π½Π°ΡΠΎΡΠ° ΠΏΠΎΠ΄Π°ΡΠΈ ΠΎΡ
Π»Π°ΠΆΠ΄Π°ΡΡΠ΅ΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ Π² ΡΡΠ΅Π±ΡΠ΅ΠΌΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅, ΠΈΠ·ΠΌΠ΅ΡΡΡΡ, ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ°ΡΡ, ΡΠ΅Π³ΠΈΡΡΡΠΈΡΠΎΠ²Π°ΡΡ ΡΠ΅ΠΆΠΈΠΌΠ½ΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΡΠ°Π±ΠΎΡΡ ΠΠ‘ΠΠ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΡΡ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΈΡ
ΡΠ°Π±ΠΎΡΡ Π² ΡΡΠ΅Π±ΡΠ΅ΠΌΡΡ
Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°Ρ
, ΠΎΠ±ΠΌΠ΅Π½ΠΈΠ²Π°ΡΡΡΡ Π΄Π°Π½Π½ΡΠΌΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΠΠΠ£ ΠΈ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠΎΠΌ.ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠΎΠ΄Π³ΠΎΡΠΎΠ²Π»Π΅Π½Π° Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠ°ΡΠΈΡ Π½Π° ΡΠ·Π»Ρ ΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ ΠΠ‘ΠΠ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΠΈΠ΅ ΡΡΠ΅Π±ΡΠ΅ΠΌΡΠ΅ Π³ΠΈΠ΄ΡΠΎ- ΠΈ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ, Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΡΠ΅ Π΄Π»Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠΈΠΊΡΠΎΠ½Π°ΡΠΎΡΠ½ΠΎΠΉ ΠΌΠ°Π»ΠΎΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠ΅ΡΠ΅ΠΉΡΠΈ ΠΊ ΡΠ±ΠΎΡΠΊΠ΅ ΠΈ ΠΎΡΠ»Π°Π΄ΠΊΠ΅ ΡΠ·Π»ΠΎΠ² ΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΠ‘ΠΠ Π² ΡΠ΅Π»ΠΎΠΌ
ΠΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π»Π°ΠΊΡΠΈΡΡΡΡΠΈΡ ΠΊΠΎΡΠΎΠ² ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ Π² ΡΠ°ΡΠΈΠΎΠ½Π°Ρ ΡΠ΅Π½Π°ΠΆΠ° ΠΈΠ· Π²ΠΈΠΊΠΎ-ΠΎΠ²ΡΡΠ½ΠΎ-Π³ΠΎΡΠΎΡ ΠΎΠ²ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ Ρ Π²Π½Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π½ΠΎΠ²ΠΎΠ³ΠΎ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°Π½ΡΠ°
The effect of a new biological preservative representing a mix of lyophilized Lactobacillus plantarum VKPM V-4173, Lactococcus lactis subsp. lactis VKPM V-2092 and Propionibacterium acidipropionici VKPMV-5723 strains (40 : 40 : 20) on the quality of haylage prepared from a mix of vetch, oats, and pea has been studied. The total bacteria content in the preservative was 1Β·1011 CFU/g. Five different variants of conservation of alfalfa haylage prepared at the budding stage were evaluated under laboratory conditions. The variants included a self-conserved control and the preservative at two different dosages (3 and 6 g/ton) with and without the addition of cellulolytic enzymes. The best results were observed in the case of both the enzyme-free and the enzyme-containing preservative at the dosage equal to 6 g/ton. These variants provided the maximum protein content in the haylage (94.3% and 94.5% of the initial content, respectively) and a high content of lactic acid (62.9% and 65.4% of the total acid content, respectively) and also good organoleptic characteristics. The determined optimum biopreservative dosage was tested under industrial conditions using 750 tons of vetch-oats-pea haylage. The use of the biopreservative provided a high-quality haylage of high nutritive value. Industrial evaluation of the effect on the productivity of milk cattle (nΒ =Β 15) of the addition of the biopreservative to the haylage showed that the maximum average daily yield of milk with basic fat content (3.4%) was obtained from cows of the experimental group whose ration included haylage prepared with the use of the studied preservative. This yield came to32.7 kg , which exceeded the yield for the control group (fed on self-conserved haylage) by 7.0%. Three months feeding of cows with the haylage prepared with the use of the new preservative brought a significant saving of money (4,862 rubles per a head at the prices of 2015β2016).Β ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½ΠΎΠ²ΠΎΠ³ΠΎ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°Π½ΡΠ°, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡΠ΅Π³ΠΎ ΡΠΎΠ±ΠΎΠΉ ΡΠΌΠ΅ΡΡ Π»ΠΈΠΎΡΠΈΠ»ΡΠ½ΠΎ Π²ΡΡΡΡΠ΅Π½Π½ΡΡ
Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ: Lactobacillus plantarum ΠΠΠΠ Π-4173, Lactococcus lactis subsp. lactis ΠΠΠΠ Π-2092 ΠΈ Propionibacterium acidipropionici ΠΠΠΠ Π-5723 (Π² ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ 40 : 40 : 20) Π½Π° ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΡΠ΅Π½Π°ΠΆΠ° ΠΈΠ· Π²ΠΈΠΊΠΎ-ΠΎΠ²ΡΡΠ½ΠΎ-Π³ΠΎΡΠΎΡ
ΠΎΠ²ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ. ΠΠ±ΡΠ΅Π΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ Π² ΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°Π½ΡΠ΅ ΡΠΎΡΡΠ°Π²Π»ΡΠ»ΠΎ 1Β·1011 ΠΠΠ/Π³. Π Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΠΎΠΌ ΠΎΠΏΡΡΠ΅ ΠΎΡΠ΅Π½Π΅Π½Ρ ΡΠ΅ΡΡΡΠ΅ Π²Π°ΡΠΈΠ°Π½ΡΠ° Π·Π°ΠΊΠ»Π°Π΄ΠΊΠΈ ΡΠ΅Π½Π°ΠΆΠ° ΠΈΠ· Π»ΡΡΠ΅ΡΠ½Ρ, ΠΏΡΠΈΠ³ΠΎΡΠΎΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π² ΡΠ°Π·Π΅ Π±ΡΡΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ, Ρ Π½ΠΎΡΠΌΠ°ΠΌΠΈ Π²Π½Π΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°Π½ΡΠ° 3 ΠΈ 6 Π³/Ρ Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΈ Π² ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ ΡΠ΅ΡΠΌΠ΅Π½ΡΠΎΠ². Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΡΠ°ΠΌΠΎΠΊΠΎΠ½ΡΠ΅ΡΠ²ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΡΠ΅Π½Π°ΠΆ. ΠΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ° Π½Π°ΠΈΠ»ΡΡΡΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π»ΠΎ Π²Π½Π΅ΡΠ΅Π½ΠΈΠ΅ Π±ΠΈΠΎΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°Π½ΡΠ° Π² ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅ 6 Π³/Ρ ΠΊΠ°ΠΊ ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎ Ρ ΡΠ΅ΡΠΌΠ΅Π½ΡΠΎΠΌ, ΡΠ°ΠΊ ΠΈ Π±Π΅Π· Π½Π΅Π³ΠΎ. Π ΡΡΠΈΡ
Π²Π°ΡΠΈΠ°Π½ΡΠ°Ρ
ΠΎΡΠΌΠ΅ΡΠ΅Π½Π° Π²ΡΡΠΎΠΊΠ°Ρ ΡΠΎΡ
ΡΠ°Π½Π½ΠΎΡΡΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π° (94,5% ΠΈ 94,3% ΠΎΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π² ΠΈΡΡ
ΠΎΠ΄Π½ΠΎΠΉ ΠΌΠ°ΡΡΠ΅) ΠΈ Π²ΡΡΠΎΠΊΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ (65,4% ΠΈ 62,9% ΠΎΡ ΠΎΠ±ΡΠ΅Π³ΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π²ΡΠ΅Ρ
ΠΊΠΈΡΠ»ΠΎΡ), Π° ΡΠ°ΠΊΠΆΠ΅ Ρ
ΠΎΡΠΎΡΠΈΠ΅ ΠΎΡΠ³Π°Π½ΠΎΠ»Π΅ΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ. Π£ΠΊΠ°Π·Π°Π½Π½Π°Ρ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ Π½ΠΎΡΠΌΠ° Π²Π½Π΅ΡΠ΅Π½ΠΈΡ Π±ΠΈΠΎΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°Π½ΡΠ° ΠΏΡΠΎΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½Π° Π² ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΈΡΠΏΡΡΠ°Π½ΠΈΡΡ
ΠΏΡΠΈ Π·Π°ΠΊΠ»Π°Π΄ΠΊΠ΅ 750 ΡΠΎΠ½Π½ ΡΠ΅Π½Π°ΠΆΠ° ΠΈΠ· Π²ΠΈΠΊΠΎ-ΠΎΠ²ΡΡΠ½ΠΎ-Π³ΠΎΡΠΎΡ
ΠΎΠ²ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π±ΠΈΠΎΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°Π½ΡΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΡΠ΅Π½Π°ΠΆ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΠΊΠ°ΡΠ΅ΡΡΠ²Π°, ΠΈΠΌΠ΅ΡΡΠΈΠΉ Π²ΡΡΠΎΠΊΡΡ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΡΡ ΠΈ ΠΏΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ ΡΠ΅Π½Π½ΠΎΡΡΡ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΈΡΠΏΡΡΠ°Π½ΠΈΡ Ρ ΠΎΡΠ΅Π½ΠΊΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠ° ΡΠΊΠ°ΡΠΌΠ»ΠΈΠ²Π°Π½ΠΈΡ ΡΠ΅Π½Π°ΠΆΠ°, Π·Π°Π³ΠΎΡΠΎΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΡΠ΅ΠΌ ΡΠ°ΠΌΠΎΠΊΠΎΠ½ΡΠ΅ΡΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ (ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ) ΠΈ Ρ Π²Π½Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠ³ΠΎ Π±ΠΈΠΎΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°Π½ΡΠ° (ΠΎΠΏΡΡ), Π½Π° ΠΌΠΎΠ»ΠΎΡΠ½ΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π½ΠΎΠ²ΠΎΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΡΠΎΠ² ΡΠ΅ΡΠ½ΠΎ-ΠΏΠ΅ΡΡΡΠΎΠΉ ΠΏΠΎΡΠΎΠ΄Ρ (n = 15), ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΠΌΠΎΠ»ΠΎΠΊΠ° ΠΈ Π·Π°ΡΡΠ°ΡΡ ΠΊΠΎΡΠΌΠΎΠ² Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ. Π‘ΡΠ΅Π΄Π½Π΅ΡΡΡΠΎΡΠ½ΡΠΉ ΡΠ΄ΠΎΠΉ ΠΌΠΎΠ»ΠΎΠΊΠ° Π±Π°Π·ΠΈΡΠ½ΠΎΠΉ ΠΆΠΈΡΠ½ΠΎΡΡΠΈ (3,4%) ΠΊΠΎΡΠΎΠ² ΠΎΠΏΡΡΠ½ΠΎΠΉ Π³ΡΡΠΏΠΏΡ Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠ°Π·Π΄ΠΎΡ ΡΠΎΡΡΠ°Π²ΠΈΠ» 32,7 ΠΊΠ³, ΡΡΠΎ Π½Π° 7% Π²ΡΡΠ΅ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΡΠΌΠΈ ΠΆΠΈΠ²ΠΎΡΠ½ΡΠΌΠΈ, ΠΏΠΎΠ»ΡΡΠ°Π²ΡΠΈΠΌΠΈ ΡΠ°ΠΌΠΎΠΊΠΎΠ½ΡΠ΅ΡΠ²ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΡΠ΅Π½Π°ΠΆ. Π‘ΠΊΠ°ΡΠΌΠ»ΠΈΠ²Π°Π½ΠΈΠ΅ ΠΌΠΎΠ»ΠΎΡΠ½ΡΠΌ ΠΊΠΎΡΠΎΠ²Π°ΠΌ Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠ°Π·Π΄ΠΎΡ ΡΠ΅Π½Π°ΠΆΠ° ΠΈΠ· Π²ΠΈΠΊΠΎ-ΠΎΠ²ΡΡΠ½ΠΎ-Π³ΠΎΡΠΎΡ
ΠΎΠ²ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ Ρ Π²Π½Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π½ΠΎΠ²ΠΎΠ³ΠΎ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°Π½ΡΠ° ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ»ΠΎ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡ Π² ΡΠ°Π·ΠΌΠ΅ΡΠ΅ 4Β 862 ΡΡΠ±Π»Ρ Π½Π° Π³ΠΎΠ»ΠΎΠ²Ρ Π² ΡΠ΅Π½Π°Ρ
2015β2016 Π³ΠΎΠ΄Π°.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½ΠΎΠ²ΠΎΠ³ΠΎ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°Π½ΡΠ°, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡΠ΅Π³ΠΎ ΡΠΎΠ±ΠΎΠΉ ΡΠΌΠ΅ΡΡ Π»ΠΈΠΎΡΠΈΠ»ΡΠ½ΠΎ Π²ΡΡΡΡΠ΅Π½Π½ΡΡ
Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ: Lactobacillus plantarum ΠΠΠΠ Π-4173, Lactococcus lactis subsp. lactis ΠΠΠΠ Π-2092 ΠΈ Propionibacterium acidipropionici ΠΠΠΠ Π-5723 (Π² ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ 40 : 40 : 20) Π½Π° ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΡΠ΅Π½Π°ΠΆΠ° ΠΈΠ· Π²ΠΈΠΊΠΎ-ΠΎΠ²ΡΡΠ½ΠΎ-Π³ΠΎΡΠΎΡ
ΠΎΠ²ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ. ΠΠ±ΡΠ΅Π΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ Π² ΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°Π½ΡΠ΅ ΡΠΎΡΡΠ°Π²Π»ΡΠ»ΠΎ 1Β·1011 ΠΠΠ/Π³. Π Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΠΎΠΌ ΠΎΠΏΡΡΠ΅ ΠΎΡΠ΅Π½Π΅Π½Ρ ΡΠ΅ΡΡΡΠ΅ Π²Π°ΡΠΈΠ°Π½ΡΠ° Π·Π°ΠΊΠ»Π°Π΄ΠΊΠΈ ΡΠ΅Π½Π°ΠΆΠ° ΠΈΠ· Π»ΡΡΠ΅ΡΠ½Ρ, ΠΏΡΠΈΠ³ΠΎΡΠΎΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π² ΡΠ°Π·Π΅ Π±ΡΡΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ, Ρ Π½ΠΎΡΠΌΠ°ΠΌΠΈ Π²Π½Π΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°Π½ΡΠ° 3 ΠΈ 6 Π³/Ρ Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΈ Π² ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ ΡΠ΅ΡΠΌΠ΅Π½ΡΠΎΠ². Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΡΠ°ΠΌΠΎΠΊΠΎΠ½ΡΠ΅ΡΠ²ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΡΠ΅Π½Π°ΠΆ. ΠΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ° Π½Π°ΠΈΠ»ΡΡΡΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π»ΠΎ Π²Π½Π΅ΡΠ΅Π½ΠΈΠ΅ Π±ΠΈΠΎΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°Π½ΡΠ° Π² ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅ 6 Π³/Ρ ΠΊΠ°ΠΊ ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎ Ρ ΡΠ΅ΡΠΌΠ΅Π½ΡΠΎΠΌ, ΡΠ°ΠΊ ΠΈ Π±Π΅Π· Π½Π΅Π³ΠΎ. Π ΡΡΠΈΡ
Π²Π°ΡΠΈΠ°Π½ΡΠ°Ρ
ΠΎΡΠΌΠ΅ΡΠ΅Π½Π° Π²ΡΡΠΎΠΊΠ°Ρ ΡΠΎΡ
ΡΠ°Π½Π½ΠΎΡΡΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π° (94,5% ΠΈ 94,3% ΠΎΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π² ΠΈΡΡ
ΠΎΠ΄Π½ΠΎΠΉ ΠΌΠ°ΡΡΠ΅) ΠΈ Π²ΡΡΠΎΠΊΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ (65,4% ΠΈ 62,9% ΠΎΡ ΠΎΠ±ΡΠ΅Π³ΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π²ΡΠ΅Ρ
ΠΊΠΈΡΠ»ΠΎΡ), Π° ΡΠ°ΠΊΠΆΠ΅ Ρ
ΠΎΡΠΎΡΠΈΠ΅ ΠΎΡΠ³Π°Π½ΠΎΠ»Π΅ΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ. Π£ΠΊΠ°Π·Π°Π½Π½Π°Ρ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ Π½ΠΎΡΠΌΠ° Π²Π½Π΅ΡΠ΅Π½ΠΈΡ Π±ΠΈΠΎΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°Π½ΡΠ° ΠΏΡΠΎΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½Π° Π² ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΈΡΠΏΡΡΠ°Π½ΠΈΡΡ
ΠΏΡΠΈ Π·Π°ΠΊΠ»Π°Π΄ΠΊΠ΅ 750 ΡΠΎΠ½Π½ ΡΠ΅Π½Π°ΠΆΠ° ΠΈΠ· Π²ΠΈΠΊΠΎ-ΠΎΠ²ΡΡΠ½ΠΎ-Π³ΠΎΡΠΎΡ
ΠΎΠ²ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π±ΠΈΠΎΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°Π½ΡΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΡΠ΅Π½Π°ΠΆ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΠΊΠ°ΡΠ΅ΡΡΠ²Π°, ΠΈΠΌΠ΅ΡΡΠΈΠΉ Π²ΡΡΠΎΠΊΡΡ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΡΡ ΠΈ ΠΏΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ ΡΠ΅Π½Π½ΠΎΡΡΡ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΈΡΠΏΡΡΠ°Π½ΠΈΡ Ρ ΠΎΡΠ΅Π½ΠΊΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠ° ΡΠΊΠ°ΡΠΌΠ»ΠΈΠ²Π°Π½ΠΈΡ ΡΠ΅Π½Π°ΠΆΠ°, Π·Π°Π³ΠΎΡΠΎΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΡΠ΅ΠΌ ΡΠ°ΠΌΠΎΠΊΠΎΠ½ΡΠ΅ΡΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ (ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ) ΠΈ Ρ Π²Π½Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠ³ΠΎ Π±ΠΈΠΎΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°Π½ΡΠ° (ΠΎΠΏΡΡ), Π½Π° ΠΌΠΎΠ»ΠΎΡΠ½ΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π½ΠΎΠ²ΠΎΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΡΠΎΠ² ΡΠ΅ΡΠ½ΠΎ-ΠΏΠ΅ΡΡΡΠΎΠΉ ΠΏΠΎΡΠΎΠ΄Ρ (n = 15), ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΠΌΠΎΠ»ΠΎΠΊΠ° ΠΈ Π·Π°ΡΡΠ°ΡΡ ΠΊΠΎΡΠΌΠΎΠ² Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ. Π‘ΡΠ΅Π΄Π½Π΅ΡΡΡΠΎΡΠ½ΡΠΉ ΡΠ΄ΠΎΠΉ ΠΌΠΎΠ»ΠΎΠΊΠ° Π±Π°Π·ΠΈΡΠ½ΠΎΠΉ ΠΆΠΈΡΠ½ΠΎΡΡΠΈ (3,4%) ΠΊΠΎΡΠΎΠ² ΠΎΠΏΡΡΠ½ΠΎΠΉ Π³ΡΡΠΏΠΏΡ Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠ°Π·Π΄ΠΎΡ ΡΠΎΡΡΠ°Π²ΠΈΠ» 32,7 ΠΊΠ³, ΡΡΠΎ Π½Π° 7% Π²ΡΡΠ΅ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΡΠΌΠΈ ΠΆΠΈΠ²ΠΎΡΠ½ΡΠΌΠΈ, ΠΏΠΎΠ»ΡΡΠ°Π²ΡΠΈΠΌΠΈ ΡΠ°ΠΌΠΎΠΊΠΎΠ½ΡΠ΅ΡΠ²ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΡΠ΅Π½Π°ΠΆ. Π‘ΠΊΠ°ΡΠΌΠ»ΠΈΠ²Π°Π½ΠΈΠ΅ ΠΌΠΎΠ»ΠΎΡΠ½ΡΠΌ ΠΊΠΎΡΠΎΠ²Π°ΠΌ Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠ°Π·Π΄ΠΎΡ ΡΠ΅Π½Π°ΠΆΠ° ΠΈΠ· Π²ΠΈΠΊΠΎ-ΠΎΠ²ΡΡΠ½ΠΎ-Π³ΠΎΡΠΎΡ
ΠΎΠ²ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ Ρ Π²Π½Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π½ΠΎΠ²ΠΎΠ³ΠΎ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°Π½ΡΠ° ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ»ΠΎ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡ Π² ΡΠ°Π·ΠΌΠ΅ΡΠ΅ 4Β 862 ΡΡΠ±Π»Ρ Π½Π° Π³ΠΎΠ»ΠΎΠ²Ρ Π² ΡΠ΅Π½Π°Ρ
2015β2016 Π³ΠΎΠ΄Π°
On the Surface Structure of Strange Superheavy Nuclei
Bound, strange, neutral superheavy nuclei, stable against strong decay, may
exist. A model effective field theory calculation of the surface energy and
density of such systems is carried out assuming vector meson couplings to
conserved currents and scalar couplings fit to data where it exists. The
non-linear relativistic mean field equations are solved assuming local baryon
sources. The approach is calibrated through a successful calculation of the
known nuclear surface tension.Comment: 12 pages, 9 figure
Searches for the light invisible axion-like particle in decay
A high statistics data sample of the decays is recorded by the OKA
collaboration. A missing mass analysis is performed to search for a light
invisible pseudoscalar axion-like particle (ALP) in the decay . No signal is observed, the upper limits for the branching
ratio of the decay are calculated. The confidence level upper limit is
changing from to for the ALP mass from 0 to
200 MeV/, except for the region of mass, where the upper limit
is .Comment: 6 pages, 6 figure
- β¦