428 research outputs found

    Measurement of the Ξ·\eta -Ξ·β€²\eta' mixing angle in Ο€βˆ’\pi^{-} and Kβˆ’K^{-} beams with GAMS-4Ο€4\pi Setup

    Full text link
    The results of mixing angle measurement for Ξ·β€²\eta', Ξ·\eta mesons generated in charge exchange reactions with Ο€βˆ’\pi^{-} and Kβˆ’K^{-} beams are preseneted. When the Ξ·β€²\eta', Ξ·\eta mesons are described in nonstrange(NS)--strange(S) quark basis the Ο€βˆ’\pi^{-} and Kβˆ’K^{-} beams allow to study ∣ηq>|\eta_{q}> and ∣ηs>|\eta_{s}> parts of the meson wave function. The cross section ratio at tβ€²=0t'=0 (GeV/c)2^{2} in the Ο€βˆ’\pi^{-} beam is RΟ€(Ξ·β€²/Ξ·)=0.56Β±0.04R_{\pi}(\eta'/\eta)= 0.56 \pm 0.04, results in mixing angle Ο•P=(36.8Β±1.)o\phi_{P} = (36.8 \pm 1.)^{o} . For Kβˆ’K^{-} beam the ratio is RK(Ξ·β€²/Ξ·)=1.30Β±0.16R_{K}(\eta'/\eta)= 1.30 \pm 0.16. It was found that gluonium content in Ξ·β€²\eta' is sin⁑2ψG=0.15Β±0.06\sin^{2}\psi_{G}= 0.15 \pm 0.06. The experiment was carried out with GAMS-4Ο€\pi Setup.Comment: 6 pages, 4 figures, 1 table, to be submitted in European physical journal C. Minor changes, the Bibliography extende

    Study of the Ξ·Ο€o\eta\pi^o system in the mass range up to 1200 MeV

    Full text link
    The reaction Ο€βˆ’pβ†’Ξ·Ο€on\pi^-p \to \eta\pi^o n has been studied with GAMS-2000 spectrometer in the secondary 38 GeV/c Ο€βˆ’\pi^--beam of the IHEP U-70 accelerator. Partial wave analysis of the reaction has been performed in the Ξ·Ο€o\eta\pi^o mass range up to 1200 MeV. The a0(980)a_0(980)-meson is seen as a sharp peak in S-wave. The tt-dependence of a0(980)a_0(980) production cross section has been studied. Dominant production of the a0(980)a_0(980) at a small transfer momentum tt confirms the hypothesis of Achasov and Shestakov about significant contribution of the ρ2\rho_2 exchange (IGJPC=1+2βˆ’βˆ’I^GJ^{PC}=1^+2^{--}) in the mechanism of a0(980)a_0(980) meson production in tt-channel of the reaction.Comment: 4 pages, 3 figures, talk given at HADRON'9

    Measurement of the K+β†’ΞΌ+Ξ½ΞΌΞ³K^+\rightarrow{\mu^+}{\nu_{\mu}}{\gamma} decay form factors in the OKA experiment

    Full text link
    A precise measurement of the vector and axial-vector form factors difference FVβˆ’FAF_V-F_A in the K+β†’ΞΌ+Ξ½ΞΌΞ³K^+\rightarrow{\mu^+}{\nu_{\mu}}{\gamma} decay is presented. About 95K events of K+β†’ΞΌ+Ξ½ΞΌΞ³K^+\rightarrow{\mu^+}{\nu_{\mu}}{\gamma} are selected in the OKA experiment. The result is FVβˆ’FA=0.134Β±0.021(stat)Β±0.027(syst)F_V-F_A=0.134\pm0.021(stat)\pm0.027(syst). Both errors are smaller than in the previous FVβˆ’FAF_V-F_A measurements.Comment: 9 pages, 8 figure

    Optimization of the drainage system of overburden dumps using geofiltration modeling

    Get PDF
    The article describes the assessment of the predicted water flows at the site of the projected rock dumps, which was carried out using geofiltration modeling. When developing the model, we used actual data on capacities, filtration coefficients and water capacity, roof and sole marks of the selected aquifers, precipitation infiltration, as well as the projected dumps are located on the slope surfac

    Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° микронасосной систСмы для ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ кровообращСния

    Get PDF
    Introduction. Support systems currently used in modern cardiac surgery to provide partial or complete, permanent or temporary replacement of cardiac function are frequently characterized by large dimensions, thus requiring major surgical interventions. Low invasiveness can be ensured by reducing the size of the implanted part of such systems, allowing these devices to be inserted through the femoral artery.Aim. Development of a minimally invasive micropump system to support blood circulation.Materials and methods. Based on the analysis of implementation of micropump circulatory support systems (MCSS), the configuration, operational principles and main components of such a system were determined. When designing a micropump, as a unit defining the weight and size parameters of the entire system, numerical and experimental methods were used to optimize its flow path based on the condition of minimizing blood injury and thrombus formation. The lubrication and cooling system was developed by solving the thermodynamic problem of heat removal. The electronic control unit was developed on the basis of accumulated experience in the design and operation of control units for circulatory support systems.Results. A micropump with a diameter of 6.5 mm and a length of 43 mm with the required hydro- and hemodynamic parameters was designed. The device ensures minimal trauma and thrombus formation. The main MCSS parameters, as well as its main components (electric drives, lubrication and cooling systems), were defined. The configuration and operational principles of the electronic control unit (ECU), consisting in a microprocessor-based control system with feedback, were developed. The ECU built-in software manages the rotational speed of the electric drives of the micropump and coolant supply pump in the required range. In addition, the software is used to measure, display and register the MCSS operational parameters, as well as to monitor their operation in the required ranges and to exchange data between the ECU and the PC.Conclusion. All the necessary documentation for the MCSS nodes and components was prepared. These nodes and components ensure the hydro- and hemodynamic parameters required for the use of the developed minimally invasive micropump system. Future work will address the stages of MCSS assembly and debugging.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Π’ соврСмСнной ΠΊΠ°Ρ€Π΄ΠΈΠΎΡ…ΠΈΡ€ΡƒΡ€Π³ΠΈΠΈ для обСспСчСния частичной ΠΈΠ»ΠΈ ΠΏΠΎΠ»Π½ΠΎΠΉ, постоянной ΠΈΠ»ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π·Π°ΠΌΠ΅Π½Ρ‹ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ сСрдца ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ систСмы ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹, Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‰ΠΈΠ΅ провСдСния ΡΠ΅Ρ€ΡŒΠ΅Π·Π½ΠΎΠΉ хирургичСской ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. Для обСспСчСния ΠΌΠ°Π»ΠΎΠΉ инвазивности трСбуСтся сущСствСнно ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ части систСмы, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ Π²Π²ΠΎΠ΄ΠΈΡ‚ΡŒ эти устройства Ρ‡Π΅Ρ€Π΅Π· Π±Π΅Π΄Ρ€Π΅Π½Π½ΡƒΡŽ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΡŽ.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ°Π»ΠΎΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠΉ микронасосной систСмы для ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ кровообращСния.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. На основС Π°Π½Π°Π»ΠΈΠ·Π° Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ примСнСния систСмы ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ кровообращСния (МБПК) Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ Π΅Π΅ состав, ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏ Ρ€Π°Π±ΠΎΡ‚Ρ‹, спроСктированы основныС Π΅Π΅ ΡƒΠ·Π»Ρ‹ ΠΈ элСмСнты. ΠŸΡ€ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ микронасоса ΠΊΠ°ΠΊ ΡƒΠ·Π»Π°, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰Π΅Π³ΠΎ массогабаритныС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ всСй систСмы, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ числСнныС ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Π΅Π³ΠΎ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ части ΠΈΠ· условия ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ‚Ρ€Π°Π²ΠΌΡ‹ ΠΊΡ€ΠΎΠ²ΠΈ ΠΈ тромбообразования. ΠŸΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ систСмы смазки ΠΈ охлаТдСния Ρ€Π΅ΡˆΠ°Π»Π°ΡΡŒ тСрмодинамичСская Π·Π°Π΄Π°Ρ‡Π° ΠΏΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡Π΅Π½ΠΈΡŽ ΠΎΡ‚Π²ΠΎΠ΄Π° Ρ‚Π΅ΠΏΠ»Π°. Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Ρ‹ΠΉ Π±Π»ΠΎΠΊ управлСния Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ Π½Π° основании Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠΏΡ‹Ρ‚Π° проСктирования ΠΈ эксплуатации Π±Π»ΠΎΠΊΠΎΠ² управлСния клиничСски примСняСмых систСм Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ кровообращСния.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π‘ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ микронасос Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ 6,5 ΠΌΠΌ ΠΈ Π΄Π»ΠΈΠ½ΠΎΠΉ 43 ΠΌΠΌ с Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡ‹ΠΌΠΈ Π³Π΅ΠΌΠΎ- ΠΈ гидродинамичСскими ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΉ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ Ρ‚Ρ€Π°Π²ΠΌΡƒ ΠΈ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ основныС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΈ спроСктированы ΡƒΠ·Π»Ρ‹ ΠΈ элСмСнты МБПК (элСктроприводы, систСма смазки ΠΈ охлаТдСния). Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ состав ΠΈ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏ Ρ€Π°Π±ΠΎΡ‚Ρ‹ элСктронного Π±Π»ΠΎΠΊΠ° управлСния (Π­Π‘Π£), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ прСдставляСт собой ΠΌΠΈΠΊΡ€ΠΎΠΏΡ€ΠΎΡ†Π΅ΡΡΠΎΡ€Π½ΡƒΡŽ систСму управлСния МБПК с ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ связью. ВстроСнноС ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ΅ обСспСчСниС Π­Π‘Π£ позволяСт ΡƒΠΏΡ€Π°Π²Π»ΡΡ‚ΡŒ частотой вращСния элСктроприводов микронасоса ΠΈ насоса ΠΏΠΎΠ΄Π°Ρ‡ΠΈ ΠΎΡ…Π»Π°ΠΆΠ΄Π°ΡŽΡ‰Π΅ΠΉ Тидкости Π² Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅, ΠΈΠ·ΠΌΠ΅Ρ€ΡΡ‚ΡŒ, ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°Ρ‚ΡŒ, Ρ€Π΅Π³ΠΈΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π΅ΠΆΠΈΠΌΠ½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ МБПК, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡ‚ΡŒ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ ΠΈΡ… Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π² Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡ‹Ρ… Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°Ρ…, ΠΎΠ±ΠΌΠ΅Π½ΠΈΠ²Π°Ρ‚ΡŒΡΡ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅ΠΆΠ΄Ρƒ Π­Π‘Π£ ΠΈ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€ΠΎΠΌ.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π° докумСнтация Π½Π° ΡƒΠ·Π»Ρ‹ ΠΈ элСмСнты МБПК, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡ‹Π΅ Π³ΠΈΠ΄Ρ€ΠΎ- ΠΈ гСмодинамичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ для примСнСния микронасосной ΠΌΠ°Π»ΠΎΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠΉ систСмы, Ρ‡Ρ‚ΠΎ позволяСт ΠΏΠ΅Ρ€Π΅ΠΉΡ‚ΠΈ ΠΊ сборкС ΠΈ ΠΎΡ‚Π»Π°Π΄ΠΊΠ΅ ΡƒΠ·Π»ΠΎΠ² ΠΈ элСмСнтов МБПК Π² Ρ†Π΅Π»ΠΎΠΌ

    ΠŸΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π»Π°ΠΊΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΡ€ΠΎΠ² ΠΏΡ€ΠΈ использовании Π² Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Ρ… сСнаТа ΠΈΠ· Π²ΠΈΠΊΠΎ-овсяно-Π³ΠΎΡ€ΠΎΡ…ΠΎΠ²ΠΎΠΉ смСси с внСсСниСм Π½ΠΎΠ²ΠΎΠ³ΠΎ биологичСского консСрванта

    Get PDF
    The effect of a new biological preservative representing a mix of lyophilized Lactobacillus plantarum VKPM V-4173, Lactococcus lactis subsp. lactis VKPM V-2092 and Propionibacterium acidipropionici VKPMV-5723 strains (40 : 40 : 20) on the quality of haylage prepared from a mix of vetch, oats, and pea has been studied. The total bacteria content in the preservative was 1Β·1011 CFU/g. Five different variants of conservation of alfalfa haylage prepared at the budding stage were evaluated under laboratory conditions. The variants included a self-conserved control and the preservative at two different dosages (3 and 6 g/ton) with and without the addition of cellulolytic enzymes. The best results were observed in the case of both the enzyme-free and the enzyme-containing preservative at the dosage equal to 6 g/ton. These variants provided the maximum protein content in the haylage (94.3% and 94.5% of the initial content, respectively) and a high content of lactic acid (62.9% and 65.4% of the total acid content, respectively) and also good organoleptic characteristics. The determined optimum biopreservative dosage was tested under industrial conditions using 750 tons of vetch-oats-pea haylage. The use of the biopreservative provided a high-quality haylage of high nutritive value. Industrial evaluation of the effect on the productivity of milk cattle (nΒ =Β 15) of the addition of the biopreservative to the haylage showed that the maximum average daily yield of milk with basic fat content (3.4%) was obtained from cows of the experimental group whose ration included haylage prepared with the use of the studied preservative. This yield came to32.7 kg , which exceeded the yield for the control group (fed on self-conserved haylage) by 7.0%. Three months feeding of cows with the haylage prepared with the use of the new preservative brought a significant saving of money (4,862 rubles per a head at the prices of 2015–2016). ИсслСдовано влияниС Π½ΠΎΠ²ΠΎΠ³ΠΎ биологичСского консСрванта, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ собой смСсь Π»ΠΈΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎ Π²Ρ‹ΡΡƒΡˆΠ΅Π½Π½Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ: Lactobacillus plantarum Π’ΠšΠŸΠœ Π’-4173, Lactococcus lactis subsp. lactis Π’ΠšΠŸΠœ Π’-2092 ΠΈ Propionibacterium acidipropionici Π’ΠšΠŸΠœ Π’-5723 (Π² ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ 40 : 40 : 20) Π½Π° качСство сСнаТа ΠΈΠ· Π²ΠΈΠΊΠΎ-овсяно-Π³ΠΎΡ€ΠΎΡ…ΠΎΠ²ΠΎΠΉ смСси. ΠžΠ±Ρ‰Π΅Π΅ содСрТаниС Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ Π² консСрвантС составляло 1Β·1011 ΠšΠžΠ•/Π³. Π’ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠΌ ΠΎΠΏΡ‹Ρ‚Π΅ ΠΎΡ†Π΅Π½Π΅Π½Ρ‹ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° Π·Π°ΠΊΠ»Π°Π΄ΠΊΠΈ сСнаТа ΠΈΠ· Π»ΡŽΡ†Π΅Ρ€Π½Ρ‹, ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π² Ρ„Π°Π·Π΅ Π±ΡƒΡ‚ΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ, с Π½ΠΎΡ€ΠΌΠ°ΠΌΠΈ внСсСния консСрванта 3 ΠΈ 6 Π³/Ρ‚ Π² присутствии ΠΈ Π² отсутствиС Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ². Π’ качСствС контроля использовали самоконсСрвированный сСнаТ. По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ экспСримСнта Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ обСспСчивало внСсСниС биоконсСрванта Π² количСствС 6 Π³/Ρ‚ ΠΊΠ°ΠΊ совмСстно с Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠΌ, Ρ‚Π°ΠΊ ΠΈ Π±Π΅Π· Π½Π΅Π³ΠΎ. Π’ этих Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π°Ρ… ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π° высокая ΡΠΎΡ…Ρ€Π°Π½Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π° (94,5% ΠΈ 94,3% ΠΎΡ‚ содСрТания Π² исходной массС) ΠΈ высокоС содСрТаниС ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ кислоты (65,4% ΠΈ 62,9% ΠΎΡ‚ ΠΎΠ±Ρ‰Π΅Π³ΠΎ содСрТания всСх кислот), Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ…ΠΎΡ€ΠΎΡˆΠΈΠ΅ органолСптичСскиС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ. Указанная ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Π°Ρ Π½ΠΎΡ€ΠΌΠ° внСсСния биоконсСрванта протСстирована Π² производствСнных испытаниях ΠΏΡ€ΠΈ Π·Π°ΠΊΠ»Π°Π΄ΠΊΠ΅ 750 Ρ‚ΠΎΠ½Π½ сСнаТа ΠΈΠ· Π²ΠΈΠΊΠΎ-овсяно-Π³ΠΎΡ€ΠΎΡ…ΠΎΠ²ΠΎΠΉ смСси. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ биоконсСрванта ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ сСнаТ высокого качСства, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠΉ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΡΠ½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΈ ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ производствСнныС испытания с ΠΎΡ†Π΅Π½ΠΊΠΎΠΉ эффСкта скармливания сСнаТа, Π·Π°Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡƒΡ‚Π΅ΠΌ самоконсСрвирования (ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ) ΠΈ с внСсСниСм исслСдуСмого биоконсСрванта (ΠΎΠΏΡ‹Ρ‚), Π½Π° ΠΌΠΎΠ»ΠΎΡ‡Π½ΡƒΡŽ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π½ΠΎΠ²ΠΎΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€ΠΎΠ² Ρ‡Π΅Ρ€Π½ΠΎ-пСстрой ΠΏΠΎΡ€ΠΎΠ΄Ρ‹ (n = 15), качСство ΠΌΠΎΠ»ΠΎΠΊΠ° ΠΈ Π·Π°Ρ‚Ρ€Π°Ρ‚Ρ‹ ΠΊΠΎΡ€ΠΌΠΎΠ² Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ. БрСднСсуточный ΡƒΠ΄ΠΎΠΉ ΠΌΠΎΠ»ΠΎΠΊΠ° базисной Тирности (3,4%) ΠΊΠΎΡ€ΠΎΠ² ΠΎΠΏΡ‹Ρ‚Π½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ раздоя составил 32,7 ΠΊΠ³, Ρ‡Ρ‚ΠΎ Π½Π° 7% Π²Ρ‹ΡˆΠ΅ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹ΠΌΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΠΌΠΈ самоконсСрвированный сСнаТ. Π‘ΠΊΠ°Ρ€ΠΌΠ»ΠΈΠ²Π°Π½ΠΈΠ΅ ΠΌΠΎΠ»ΠΎΡ‡Π½Ρ‹ΠΌ ΠΊΠΎΡ€ΠΎΠ²Π°ΠΌ Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ раздоя сСнаТа ΠΈΠ· Π²ΠΈΠΊΠΎ-овсяно-Π³ΠΎΡ€ΠΎΡ…ΠΎΠ²ΠΎΠΉ смСси с внСсСниСм Π½ΠΎΠ²ΠΎΠ³ΠΎ биологичСского консСрванта обСспСчило экономию Π² Ρ€Π°Π·ΠΌΠ΅Ρ€Π΅ 4Β 862 рубля Π½Π° Π³ΠΎΠ»ΠΎΠ²Ρƒ Π² Ρ†Π΅Π½Π°Ρ… 2015–2016 Π³ΠΎΠ΄Π°.ИсслСдовано влияниС Π½ΠΎΠ²ΠΎΠ³ΠΎ биологичСского консСрванта, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ собой смСсь Π»ΠΈΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎ Π²Ρ‹ΡΡƒΡˆΠ΅Π½Π½Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ: Lactobacillus plantarum Π’ΠšΠŸΠœ Π’-4173, Lactococcus lactis subsp. lactis Π’ΠšΠŸΠœ Π’-2092 ΠΈ Propionibacterium acidipropionici Π’ΠšΠŸΠœ Π’-5723 (Π² ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ 40 : 40 : 20) Π½Π° качСство сСнаТа ΠΈΠ· Π²ΠΈΠΊΠΎ-овсяно-Π³ΠΎΡ€ΠΎΡ…ΠΎΠ²ΠΎΠΉ смСси. ΠžΠ±Ρ‰Π΅Π΅ содСрТаниС Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ Π² консСрвантС составляло 1Β·1011 ΠšΠžΠ•/Π³. Π’ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠΌ ΠΎΠΏΡ‹Ρ‚Π΅ ΠΎΡ†Π΅Π½Π΅Π½Ρ‹ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° Π·Π°ΠΊΠ»Π°Π΄ΠΊΠΈ сСнаТа ΠΈΠ· Π»ΡŽΡ†Π΅Ρ€Π½Ρ‹, ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π² Ρ„Π°Π·Π΅ Π±ΡƒΡ‚ΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ, с Π½ΠΎΡ€ΠΌΠ°ΠΌΠΈ внСсСния консСрванта 3 ΠΈ 6 Π³/Ρ‚ Π² присутствии ΠΈ Π² отсутствиС Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ². Π’ качСствС контроля использовали самоконсСрвированный сСнаТ. По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ экспСримСнта Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ обСспСчивало внСсСниС биоконсСрванта Π² количСствС 6 Π³/Ρ‚ ΠΊΠ°ΠΊ совмСстно с Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠΌ, Ρ‚Π°ΠΊ ΠΈ Π±Π΅Π· Π½Π΅Π³ΠΎ. Π’ этих Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π°Ρ… ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π° высокая ΡΠΎΡ…Ρ€Π°Π½Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π° (94,5% ΠΈ 94,3% ΠΎΡ‚ содСрТания Π² исходной массС) ΠΈ высокоС содСрТаниС ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ кислоты (65,4% ΠΈ 62,9% ΠΎΡ‚ ΠΎΠ±Ρ‰Π΅Π³ΠΎ содСрТания всСх кислот), Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ…ΠΎΡ€ΠΎΡˆΠΈΠ΅ органолСптичСскиС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ. Указанная ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Π°Ρ Π½ΠΎΡ€ΠΌΠ° внСсСния биоконсСрванта протСстирована Π² производствСнных испытаниях ΠΏΡ€ΠΈ Π·Π°ΠΊΠ»Π°Π΄ΠΊΠ΅ 750 Ρ‚ΠΎΠ½Π½ сСнаТа ΠΈΠ· Π²ΠΈΠΊΠΎ-овсяно-Π³ΠΎΡ€ΠΎΡ…ΠΎΠ²ΠΎΠΉ смСси. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ биоконсСрванта ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ сСнаТ высокого качСства, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠΉ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΡΠ½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΈ ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ производствСнныС испытания с ΠΎΡ†Π΅Π½ΠΊΠΎΠΉ эффСкта скармливания сСнаТа, Π·Π°Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡƒΡ‚Π΅ΠΌ самоконсСрвирования (ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ) ΠΈ с внСсСниСм исслСдуСмого биоконсСрванта (ΠΎΠΏΡ‹Ρ‚), Π½Π° ΠΌΠΎΠ»ΠΎΡ‡Π½ΡƒΡŽ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π½ΠΎΠ²ΠΎΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€ΠΎΠ² Ρ‡Π΅Ρ€Π½ΠΎ-пСстрой ΠΏΠΎΡ€ΠΎΠ΄Ρ‹ (n = 15), качСство ΠΌΠΎΠ»ΠΎΠΊΠ° ΠΈ Π·Π°Ρ‚Ρ€Π°Ρ‚Ρ‹ ΠΊΠΎΡ€ΠΌΠΎΠ² Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ. БрСднСсуточный ΡƒΠ΄ΠΎΠΉ ΠΌΠΎΠ»ΠΎΠΊΠ° базисной Тирности (3,4%) ΠΊΠΎΡ€ΠΎΠ² ΠΎΠΏΡ‹Ρ‚Π½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ раздоя составил 32,7 ΠΊΠ³, Ρ‡Ρ‚ΠΎ Π½Π° 7% Π²Ρ‹ΡˆΠ΅ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹ΠΌΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΠΌΠΈ самоконсСрвированный сСнаТ. Π‘ΠΊΠ°Ρ€ΠΌΠ»ΠΈΠ²Π°Π½ΠΈΠ΅ ΠΌΠΎΠ»ΠΎΡ‡Π½Ρ‹ΠΌ ΠΊΠΎΡ€ΠΎΠ²Π°ΠΌ Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ раздоя сСнаТа ΠΈΠ· Π²ΠΈΠΊΠΎ-овсяно-Π³ΠΎΡ€ΠΎΡ…ΠΎΠ²ΠΎΠΉ смСси с внСсСниСм Π½ΠΎΠ²ΠΎΠ³ΠΎ биологичСского консСрванта обСспСчило экономию Π² Ρ€Π°Π·ΠΌΠ΅Ρ€Π΅ 4Β 862 рубля Π½Π° Π³ΠΎΠ»ΠΎΠ²Ρƒ Π² Ρ†Π΅Π½Π°Ρ… 2015–2016 Π³ΠΎΠ΄Π°

    On the Surface Structure of Strange Superheavy Nuclei

    Full text link
    Bound, strange, neutral superheavy nuclei, stable against strong decay, may exist. A model effective field theory calculation of the surface energy and density of such systems is carried out assuming vector meson couplings to conserved currents and scalar couplings fit to data where it exists. The non-linear relativistic mean field equations are solved assuming local baryon sources. The approach is calibrated through a successful calculation of the known nuclear surface tension.Comment: 12 pages, 9 figure

    Searches for the light invisible axion-like particle in K+β†’Ο€+Ο€0aK^{+}\to\pi^{+}\pi^{0}a decay

    Full text link
    A high statistics data sample of the K+K^{+} decays is recorded by the OKA collaboration. A missing mass analysis is performed to search for a light invisible pseudoscalar axion-like particle (ALP) aa in the decay K+β†’Ο€+Ο€0aK^{+} \to \pi^{+} \pi^{0} a. No signal is observed, the upper limits for the branching ratio of the decay are calculated. The 90%90\% confidence level upper limit is changing from 2.5β‹…10βˆ’62.5\cdot10^{-6} to 2β‹…10βˆ’72\cdot10^{-7} for the ALP mass from 0 to 200 MeV/c2c^{2}, except for the region of Ο€0\pi^{0} mass, where the upper limit is 4.4β‹…10βˆ’64.4\cdot10^{-6}.Comment: 6 pages, 6 figure
    • …
    corecore