2 research outputs found

    Design and Development of MIMO Antennas for WiGig Terminals

    Get PDF
    This article presents a design for high-gain MIMO antennas with compact geometry. The proposed design is composed of four antennas in MIMO configuration, wherein, each antenna is made up of small units of microstrip patches. The overall geometry is printed on the top layer of the substrate, i.e., Rogers RT-5880 with permittivity of 2.2, permeability of 1.0, dielectric loss of 0.0009, and depth of 0.508 mm. The proposed design covers an area of 29.5 × 61.4 mm2, wherein each antenna covers an area of 11.82 × 25.28 mm2. The dimensions of the microstrip lines in each MIMO element were optimized to achieve a good impedance matching. The design is resonating at 61 GHz, with a wide practical bandwidth of more than 7 GHz, thereby covering IEEE 802.11ad WiGig (58–65 GHz). The average value of gain ranges from 9.45 to 13.6 dBi over the entire frequency bandwidth whereas, the average value of efficiency ranges from 55.5% to 84.3%. The proposed design attains a compact volume, wide bandwidth, and good gain and efficiency performances, which makes it suitable for WiGig terminals

    MIMO Antennas for Smart 5G Devices

    Get PDF
    This paper presents the design of 8 x 8 MIMO antennas for future 5G devices such as smart watches and dongles etc. Each antenna of the MIMO configuration occupies 3 x 4 mm2 and is printed on the top layer of the substrate in the form of a rotated H-shaped patch. The substrate used for the design is a 31.2 x 31.2 x 1.57 mm3, Rogers RT-5880 board, with dielectric constant of 2.2. The top layer of the substrate has eight MIMO antennas whereas, the bottom layer is composed of ground plane. The ground plane is an Electromagnetic Band Gap (EBG) based structure designed for the enhancement of gain and efficiency. Each antenna is fed from the bottom layer of the substrate through vias to avoid any spurious radiation. The MIMO antennas resonate at 25.2 GHz with a 6 dB percentage bandwidth of 15.6%. The gain attained by the antennas in the entire bandwidth is above 7.2 dB with maximum value of 8.732 dB at the resonant frequency. Likewise, the value of efficiency attained by the antennas in the entire bandwidth is above 65% with maximum of 92.7% at the resonant frequency. The simulation and measurement results have substantiated a good performance of the MIMO antennas, thus making them suitable for compact 5G devices
    corecore