9 research outputs found

    Noise and Controllability: suppression of controllability in large quantum systems

    Full text link
    A closed quantum system is defined as completely controllable if an arbitrary unitary transformation can be executed using the available controls. In practice, control fields are a source of unavoidable noise. Can one design control fields such that the effect of noise is negligible on the time-scale of the transformation? Complete controllability in practice requires that the effect of noise can be suppressed for an arbitrary transformation. The present study considers a paradigm of control, where the Lie-algebraic structure of the control Hamiltonian is fixed, while the size of the system increases, determined by the dimension of the Hilbert space representation of the algebra. We show that for large quantum systems, generic noise in the controls dominates for a typical class of target transformations i.e., complete controllability is destroyed by the noise.Comment: 4 pages, no figure

    Negativity as a distance from a separable state

    Get PDF
    The computable measure of the mixed-state entanglement, the negativity, is shown to admit a clear geometrical interpretation, when applied to Schmidt-correlated (SC) states: the negativity of a SC state equals a distance of the state from a pertinent separable state. As a consequence, a SC state is separable if and only if its negativity vanishes. Another remarkable consequence is that the negativity of a SC can be estimated "at a glance" on the density matrix. These results are generalized to mixtures of SC states, which emerge in certain quantum-dynamical settings.Comment: 9 pages, 1 figur

    Efficient simulation of quantum evolution using dynamical coarse-graining

    Full text link
    A novel scheme to simulate the evolution of a restricted set of observables of a quantum system is proposed. The set comprises the spectrum-generating algebra of the Hamiltonian. The idea is to consider a certain open-system evolution, which can be interpreted as a process of weak measurement of the distinguished observables performed on the evolving system of interest. Given that the observables are "classical" and the Hamiltonian is moderately nonlinear, the open system dynamics displays a large time-scales separation between the dephasing of the observables and the decoherence of the evolving state in the basis of the generalized coherent states (GCS), associated with the spectrum-generating algebra. The time scale separation allows the unitary dynamics of the observables to be efficiently simulated by the open-system dynamics on the intermediate time-scale.The simulation employs unraveling of the corresponding master equations into pure state evolutions, governed by the stochastic nonlinear Schroedinger equantion (sNLSE). It is proved that GCS are globally stable solutions of the sNLSE, if the Hamilonian is linear in the algebra elements.Comment: The version submitted to Phys. Rev. A, 28 pages, 3 figures, comments are very welcom

    The rise and fall of quantum and classical correlations in open-system dynamics

    Get PDF
    Interacting quantum systems evolving from an uncorrelated composite initial state generically develop quantum correlations -- entanglement. As a consequence, a local description of interacting quantum system is impossible as a rule. A unitarily evolving (isolated) quantum system generically develops extensive entanglement: the magnitude of the generated entanglement will increase without bounds with the effective Hilbert space dimension of the system. It is conceivable, that coupling of the interacting subsystems to local dephasing environments will restrict the generation of entanglement to such extent, that the evolving composite system may be considered as approximately disentangled. This conjecture is addressed in the context of some common models of a bipartite system with linear and nonlinear interactions and local coupling to dephasing environments. Analytical and numerical results obtained imply that the conjecture is generally false. Open dynamics of the quantum correlations is compared to the corresponding evolution of the classical correlations and a qualitative difference is found.Comment: 35 pages, 10 figures. Revised according to comments of the referees. Accepted for publication in Phys. Rev.

    The globally stable solution of a stochastic Nonlinear Schrodinger Equation

    Full text link
    Weak measurement of a subset of noncommuting observables of a quantum system can be modeled by the open-system evolution, governed by the master equation in the Lindblad form. The open-system density operator can be represented as statistical mixture over non unitarily evolving pure states, driven by the stochastic Nonlinear Schrodinger equation (sNLSE). The globally stable solution of the sNLSE is obtained in the case where the measured subset of observables comprises the spectrum-generating algebra of the system. This solution is a generalized coherent state (GCS), associated with the algebra. The result is based on proving that GCS minimize the trace-norm of the covariance matrix, associated with the spectrum-generating algebra.Comment: 10 pages, comments are very welcom

    A Complete Set of Local Invariants for a Family of Multipartite Mixed States

    Full text link
    We study the equivalence of quantum states under local unitary transformations by using the singular value decomposition. A complete set of invariants under local unitary transformations is presented for several classes of tripartite mixed states in KxMxN composite systems. Two density matrices in the same class are equivalent under local unitary transformations if and only if all these invariants have equal values for these density matrices.Comment: 10 page
    corecore