2 research outputs found

    Point contact Andreev reflection spectroscopy of NdFeAsO_0.85

    Full text link
    The newly discovered oxypnictide family of superconductors show very high critical temperatures of up to 55K. Whilst there is growing evidence that suggests a nodal order parameter, point contact Andreev reflection spectroscopy can provide crucial information such as the gap value and possibly the number of energy gaps involved. For the oxygen deficient NdFeAsO0.85 with a Tc of 45.5K, we show that there is clearly a gap value at 4.2K that is of the order of 7meV, consistent with previous studies on oxypnictides with lower Tc. Additionally, taking the spectra as a function of gold tip contact pressure reveals important changes in the spectra which may be indicative of more complex physics underlying this structure.Comment: 11 pages, 3 figures. New references included, extra discussion. This version is accepted in Superconductor Science and Technolog

    Nuclear magnetic relaxation and superfluid density in Fe-pnictide superconductors: An anisotropic \pm s-wave scenario

    Full text link
    We discuss the nuclear magnetic relaxation rate and the superfluid density with the use of the effective five-band model by Kuroki et al. [Phys. Rev. Lett. 101, 087004 (2008)] in Fe-based superconductors. We show that a fully-gapped anisotropic \pm s-wave superconductivity consistently explains experimental observations. In our phenomenological model, the gaps are assumed to be anisotropic on the electron-like \beta Fermi surfaces around the M point, where the maximum of the anisotropic gap is about four times larger than the minimum.Comment: 10 pages, 8 figures; Submitted versio
    corecore