28 research outputs found

    Influence of continental advection on aerosol characteristics over Bay of Bengal (BoB) in winter: results from W-ICARB cruise experiment

    Get PDF
    The transport of aerosols and pollutants from continental India to the adjoining oceanic areas is a major topic of concern and several experimental campaigns have been conducted over the region focusing on aerosol characteristics and their climate implications. The present study analyzes the spectral aerosol optical depth (AOD) variations over Bay of Bengal (BoB) during Winter-Integrated Campaign for Aerosols, gases and Radiation Budget (W-ICARB) from 27 December 2008 to 30 January 2009 and investigates the influence of the adjoining landmass to the marine aerosol field. High AOD<sub>500</sub> values (>0.7) occurred over northern BoB due to outflow of aerosols and pollutants from the densely populated Indo-Gangetic Plains (IGP); low AOD<sub>500</sub> (0.1–0.2) was observed in central and southern BoB, far away from the mainland. The Angstrom exponent "α" was observed to be high (>1.2) near coastal waters, indicating relative abundance of accumulation-mode continental aerosols. On the other hand, over southern BoB its values dropped below ~0.7. National Center for Environmental Prediction (NCEP) reanalysis data on winds at 850 and 700 hPa, along with air-mass trajectories calculated using Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, suggested transport of continental aerosols from central and northern India over the BoB. On the other hand, when the ship was crossing the eastern BoB, the aerosol loading was strongly affected by air-masses originating from Southeast Asia, causing an increase in AOD and α. Biomass-burning episodes over the region played an important role in the observed aerosol properties. Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) AOD<sub>550</sub> and cruise measured AOD<sub>550</sub> showed good agreement (<I>R</I><sup>2</sup> = 0.86 and 0.77, respectively) over BoB, exhibiting similar AOD and α spatio-temporal variation

    Effects of Crop Residue Burning on Aerosol Properties, Plume Characteristics, and Long-Range Transport over Northern India

    Get PDF
    Aerosol emissions from biomass burning are of specific interest over the globe due to their strong radiative impacts and climate implications. The present study examines the impact of paddy crop residue burning over northern India during the postmonsoon (October-November) season of 2012 on modification of aerosol properties, as well as the long-range transport of smoke plumes, altitude characteristics, and affected areas via the synergy of ground-based measurements and satellite observations. During this period, Moderate Resolution Imaging Spectroradiometer (MODIS) images show a thick smoke/hazy aerosol layer below 2-2.5 km in the atmosphere covering nearly the whole Indo-Gangetic Plains (IGP). The air mass trajectories originating from the biomass-burning source region over Punjab at 500 m reveal a potential aerosol transport pathway along the Ganges valley from west to east, resulting in a strong aerosol optical depth (AOD) gradient. Sometimes, depending upon the wind direction and meteorological conditions, the plumes also influence central India, the Arabian Sea, and the Bay of Bengal, thus contributing to Asian pollution outflow. The increased number of fire counts (Terra and Aqua MODIS data) is associated with severe aerosol-laden atmospheres (AOD(500 nm) \u3e 1.0) over six IGP locations, high values of Angstrom exponent (\u3e1.2), high particulate mass 2.5 (PM2.5) concentrations (\u3e100-150 mu gm(-3)), and enhanced Ozone Monitoring Instrument Aerosol Index gradient (similar to 2.5) and NO2 concentrations (similar to 6 x 10(15) mol/cm(2)), indicating the dominance of smoke aerosols from agricultural crop residue burning. The aerosol size distribution is shifted toward the fine-mode fraction, also exhibiting an increase in the radius of fine aerosols due to coagulation processes in a highly turbid environment. The spectral variation of the single-scattering albedo reveals enhanced dominance of moderately absorbing aerosols, while the aerosol properties, modification, and mixing atmospheric processes differentiate along the IGP sites depending on the distance from the aerosol source, urban influence, and local characteristics

    Extremely large anthropogenic-aerosol contribution to total aerosol load over the Bay of Bengal during winter season

    Get PDF
    Ship-borne observations of spectral aerosol optical depth (AOD) have been carried out over the entire Bay of Bengal (BoB) as part of the W-ICARB cruise campaign during the period 27 December 2008–30 January 2009. The results reveal a pronounced temporal and spatial variability in the optical characteristics of aerosols mainly due to anthropogenic emissions and their dispersion controlled by local meteorology. The highest aerosol amount, with mean AOD&lt;sub&gt;500&lt;/sub&gt;&gt;0.4, being even above 1.0 on specific days, is found close to the coastal regions in the western and northern parts of BoB. In these regions the Ångström exponent is also found to be high (~1.2–1.25) indicating transport of strong anthropogenic emissions from continental regions, while very high AOD&lt;sub&gt;500&lt;/sub&gt; (0.39&amp;plusmn;0.07) and &amp;alpha;&lt;sub&gt;380–870&lt;/sub&gt; values (1.27&amp;plusmn;0.09) are found over the eastern BoB. Except from the large &amp;alpha;&lt;sub&gt;380–870&lt;/sub&gt; values, an indication of strong fine-mode dominance is also observed from the AOD curvature, which is negative in the vast majority of the cases, suggesting dominance of an anthropogenic-pollution aerosol type. On the other hand, clean maritime conditions are rather rare over the region, while the aerosol types are further examined through a classification scheme based on the relationship between α and &lt;i&gt;d&lt;/i&gt;&amp;alpha;. It was found that even for the same α values the fine-mode dominance is larger for higher AODs showing the strong continental influence over the marine environment of BoB. Furthermore, there is also an evidence of aerosol-size growth under more turbid conditions indicative of coagulation and/or humidification over specific BoB regions. The results obtained using OPAC model show significant fraction of soot aerosols (~6 %–8 %) over the eastern and northwestern BoB, while coarse-mode sea salt particles are found to dominate in the southern parts of BoB

    Improved Satellite Retrievals of NO2 and SO2 over the Canadian Oil Sands and Comparisons with Surface Measurements

    Get PDF
    Satellite remote sensing is increasingly being used to monitor air quality over localized sources such as the Canadian oil sands. Following an initial study, significantly low biases have been identified in current NO2 and SO2 retrieval products from the Ozone Monitoring Instrument (OMI) satellite sensor over this location resulting from a combination of its rapid development and small spatial scale. Air mass factors (AMFs) used to convert line-of-sight "slant" columns to vertical columns were re-calculated for this region based on updated and higher resolution input information including absorber profiles from a regional-scale (15 km 15 km resolution) air quality model, higher spatial and temporal resolution surface reflectivity, and an improved treatment of snow. The overall impact of these new Environment Canada (EC) AMFs led to substantial increases in the peak NO2 and SO2 average vertical column density (VCD), occurring over an area of intensive surface mining, by factors of 2 and 1.4, respectively, relative to estimates made with previous AMFs. Comparisons are made with long-term averages of NO2 and SO2 (2005-2011) from in situ surface monitors by using the air quality model to map the OMI VCDs to surface concentrations. This new OMI-EC product is able to capture the spatial distribution of the in situ instruments (slopes of 0.65 to 1.0, correlation coefficients of greater than 0.9). The concentration absolute values from surface network observations were in reasonable agreement, with OMI-EC NO2 and SO2 biased low by roughly 30%. Several complications were addressed including correction for the interference effect in the surface NO2 instruments and smoothing and clear-sky biases in the OMI measurements. Overall these results highlight the importance of using input information that accounts for the spatial and temporal variability of the location of interest when performing retrievals

    Impact of agriculture crop residue burning on atmospheric aerosol loading &ndash; a study over Punjab State, India

    No full text
    The present study deals with the impact of agriculture crop residue burning on aerosol properties during October 2006 and 2007 over Punjab State, India using ground based measurements and multi-satellite data. Spectral aerosol optical depth (AOD) and Ångström exponent (α) values exhibited larger day to day variation during crop residue burning period. The monthly mean Ångström exponent "α" and turbidity parameter "β" values during October 2007 were 1.31&plusmn;0.31 and 0.36&plusmn;0.21, respectively. The higher values of "α" and "β" suggest turbid atmospheric conditions with increase in fine mode aerosols over the region during crop residue burning period. AURA-OMI derived Aerosol Index (AI) and Nitrogen dioxide (NO<sub>2</sub>) showed higher values over the study region during October 2007 compared to October 2006 suggesting enhanced atmospheric pollution associated with agriculture crop residue burning

    Persistent sensitivity of Asian aerosol to emissions of nitrogen oxides

    No full text
    We use a chemical transport model and its adjoint to examine the sensitivity of secondary inorganic aerosol formation to emissions of precursor trace gases from Asia. Sensitivity simulations indicate that secondary inorganic aerosol mass concentrations are most sensitive to ammonia (NH[subscript 3]) emissions in winter and to sulfur dioxide (SO[subscript 2]) emissions during the rest of the year. However, in the annual mean, the perturbations on Asian population-weighted ground-level secondary inorganic aerosol concentrations of 34% due to changing nitrogen oxide (NO[subscript x]) emissions are comparable to those from changing either SO[subscript 2] (41%) or NH[subscript 3] (25%) emissions. The persistent sensitivity to NOx arises from the regional abundance of NH[subscript 3] over Asia that promotes ammonium nitrate formation. IASI satellite observations corroborate the NH[subscript 3] abundance. Projected emissions for 2020 indicate continued sensitivity to NOx emissions. We encourage more attention to NO[subscript x] controls in addition to SO[subscript 2] and NH[subscript 3] controls to reduce ground-level East Asian aerosol.United States. National Aeronautics and Space AdministrationUnited States. National Oceanic and Atmospheric AdministrationUnited States. Environmental Protection AgencyNatural Sciences and Engineering Research Council of Canad

    Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India

    Get PDF
    Aerosol emissions from biomass burning are of specific interest over the globe due to their strong radiative impacts and climate implications. The present study examines the impact of paddy crop residue burning over northern India during the postmonsoon (October-November) season of 2012 on modification of aerosol properties, as well as the long-range transport of smoke plumes, altitude characteristics, and affected areas via the synergy of ground-based measurements and satellite observations. During this period, Moderate Resolution Imaging Spectroradiometer (MODIS) images show a thick smoke/hazy aerosol layer below 2-2.5 km in the atmosphere covering nearly the whole Indo-Gangetic Plains (IGP). The air mass trajectories originating from the biomass-burning source region over Punjab at 500 m reveal a potential aerosol transport pathway along the Ganges valley from west to east, resulting in a strong aerosol optical depth (AOD) gradient. Sometimes, depending upon the wind direction and meteorological conditions, the plumes also influence central India, the Arabian Sea, and the Bay of Bengal, thus contributing to Asian pollution outflow. The increased number of fire counts (Terra and Aqua MODIS data) is associated with severe aerosol-laden atmospheres (AOD(500 nm) > 1.0) over six IGP locations, high values of Angstrom exponent (>1.2), high particulate mass 2.5 (PM2.5) concentrations (>100-150 mu gm(-3)), and enhanced Ozone Monitoring Instrument Aerosol Index gradient (similar to 2.5) and NO2 concentrations (similar to 6 x 10(15) mol/cm(2)), indicating the dominance of smoke aerosols from agricultural crop residue burning. The aerosol size distribution is shifted toward the fine-mode fraction, also exhibiting an increase in the radius of fine aerosols due to coagulation processes in a highly turbid environment. The spectral variation of the single-scattering albedo reveals enhanced dominance of moderately absorbing aerosols, while the aerosol properties, modification, and mixing atmospheric processes differentiate along the IGP sites depending on the distance from the aerosol source, urban influence, and local characteristics

    OMI satellite observations of decadal changes in ground-level sulfur dioxide over North America

    No full text
    Sulfur dioxide (SO2) has a significant impact on the environment and human health. We estimated ground-level sulfur dioxide (SO2) concentrations from the Ozone Monitoring Instrument (OMI) using SO2 profiles from the Global Environmental Multi-scale – Modelling Air quality and CHemistry (GEM-MACH) model over North America for the period of 2005–2015. OMI-derived ground-level SO2 concentrations (r = 0. 61) and trends (r = 0. 74) correlated well with coincident in situ measurements from air quality networks over North America. We found a strong decreasing trend in coincidently sampled ground-level SO2 from OMI (−81 ± 19 %) and in situ measurements (−86 ± 13 %) over the eastern US for the period of 2005–2015, which reflects the implementation of stricter pollution control laws, including flue-gas desulfurization (FGD) devices in power plants. The spatially and temporally contiguous OMI-derived ground-level SO2 concentrations can be used to assess the impact of long-term exposure to SO2 on the health of humans and the environment
    corecore