526 research outputs found

    Anomalous Hall effect in granular ferromagnetic metals and effects of weak localization

    Full text link
    We theoretically investigate the anomalous Hall effect in a system of dense-packed ferromagnetic grains in the metallic regime. Using the formalism recently developed for the conventional Hall effect in granular metals, we calculate the residual anomalous Hall conductivity σxy\sigma_{xy} and resistivity ρxy\rho_{xy} and weak localization corrections to them for both skew-scattering and side-jump mechanisms. We find that, unlike for homogeneously disordered metals, the scaling relation between ρxy\rho_{xy} and the longitudinal resistivity ρxx\rho_{xx} does not hold. The weak localization corrections, however, are found to be in agreement with those for homogeneous metals. We discuss recent experimental data on the anomalous Hall effect in polycrystalline iron films in view of the obtained results.Comment: published version, 10 pages, 6 figure

    Surface impedance of superconductors with magnetic impurities

    Full text link
    Motivated by the problem of the residual surface resistance of the superconducting radio-frequency (SRF) cavities, we develop a microscopic theory of the surface impedance of s-wave superconductors with magnetic impurities. We analytically calculate the current response function and surface impedance for a sample with spatially uniform distribution of impurities, treating magnetic impurities in the framework of the Shiba theory. The obtained general expressions hold in a wide range of parameter values, such as temperature, frequency, mean free path, and exchange coupling strength. This generality, on the one hand, allows for direct numerical implementation of our results to describe experimental systems (SRF cavities, superconducting qubits) under various practically relevant conditions. On the other hand, explicit analytical expressions can be obtained in a number of limiting cases, which makes possible further theoretical investigation of certain regimes. As a feature of key relevance to SRF cavities, we show that in the regime of "gapless superconductivity" the surface resistance exhibits saturation at zero temperature. Our theory thus explicitly demonstrates that magnetic impurities, presumably contained in the oxide surface layer of the SRF cavities, provide a microscopic mechanism for the residual resistance.Comment: 9 pages, 3 figs; v2: published versio

    Hall Transport in Granular Metals and Effects of Coulomb Interactions

    Full text link
    We present a theory of Hall effect in granular systems at large tunneling conductance gT1g_{T}\gg 1. Hall transport is essentially determined by the intragrain electron dynamics, which, as we find using the Kubo formula and diagrammatic technique, can be described by nonzero diffusion modes inside the grains. We show that in the absence of Coulomb interaction the Hall resistivity ρxy\rho_{xy} depends neither on the tunneling conductance nor on the intragrain disorder and is given by the classical formula ρxy=H/(nec)\rho_{xy}=H/(n^* e c), where nn^* differs from the carrier density nn inside the grains by a numerical coefficient determined by the shape of the grains and type of granular lattice. Further, we study the effects of Coulomb interactions by calculating first-order in 1/gT1/g_T corrections and find that (i) in a wide range of temperatures T \gtrsim \Ga exceeding the tunneling escape rate \Ga, the Hall resistivity ρxy\rho_{xy} and conductivity \sig_{xy} acquire logarithmic in TT corrections, which are of local origin and absent in homogeneously disordered metals; (ii) large-scale ``Altshuler-Aronov'' correction to \sig_{xy}, relevant at T\ll\Ga, vanishes in agreement with the theory of homogeneously disordered metals.Comment: 29 pages, 16 figure

    Oscillations of Induced Magnetization in Superconductor-Ferromagnet Heterostructures

    Full text link
    We study a change in the spin magnetization of a superconductor-ferromagnet (SF) heterostructure, when temperature is lowered below the superconducting transition temperature. It is assumed that the SF interface is smooth on the atomic scale and the mean free path is not too short. Solving the Eilenberger equation we show that the spin magnetic moment induced in the superconductor is an oscillating sign-changing function of the product hdhd of the exchange field hh and the thickness dd of the ferromagnet. Therefore the total spin magnetic moment of the system in the superconducting state can be not only smaller (screening) but also greater (anti-screening) than that in the normal state, in contrast with the case of highly disordered (diffusive) systems, where only screening is possible. This surprising effect is due to peculiar periodic properties of localized Andreev states in the system. It is most pronounced in systems with ideal ballistic transport (no bulk disorder in the samples, smooth ideally transparent interface), however these ideal conditions are not crucial for the very existence of the effect. We show that oscillations exist (although suppressed) even for arbitrary low interface transparency and in the presence of bulk disorder, provided that hτ1h \tau \gg 1 (τ\tau -- mean free path). At low interface transparency we solve the problem for arbitrary strength of disorder and obtain oscillating magnetization in ballistic regime (hτ1h \tau \gg 1) and nonoscillating magnetization in diffusive one (hτ1h \tau \ll 1) as limiting cases of one formula.Comment: 10 pages, 2 figures, accepted for publication in Phys. Rev.

    Проект ЭСПЦ по производству нержавеющих марок стали в условиях Урала производительностью 650 тыс. тонн стали в год

    Get PDF
    Реферат Выпускная квалификационная работа 131 листов, 13 рисунков, 36 источников, 2 приложения. Ключевые слова: электросталеплавильный цех, электродуговая печь, АКР, электрофильтр, МНЛЗ, блюм. Объектом исследования является ЭСПЦ производительностью 650 тыс. тонн в год нержавеющих марок стали в условия Урала. Цели исследования: выбор основного оборудования, расчет цеха и оборудования, баланса металла и шихты в цехе, социальная ответственность и экономическое обоснование строительства цеха. Работа представлена введением, 5 разделами и заключением, список использованных источников. В разделе 슫Объект исследования슻 описан проектируемый ЭСПЦ, рассмотрены основные пролеты и располагающееся в них оборудование. Во разделе 슫Расчеты и аналитика슻 представлены расчет баланса металла в цехе и шAbstract Abstract The graduation work consists of 131 pages, 13 figures, 36 sources, 2 appendices. Keywords: arc furnace plant, electric arc furnace, AOD, electrostatic precipitator, continuous casting machines, bloom. The object of study is the EAF shop with the capacity of 650 thousand tons a year of stainless steels under the conditions of the Urals. The aim of the study: choice of the basic equipment, calculation of plant and equipment, the balance of metal and charge in the plant, social responsibility and economic feasibility of the plant construction. The work includes the introduction, 5 sections and conclusion, list of references. In the section «Object of study» describe the designed EAF shop, considere the main spans and equipment located in them. In the section «Calculation a

    Excitonic condensation in a double-layer graphene system

    Full text link
    The possibility of excitonic condensation in a recently proposed electrically biased double-layer graphene system is studied theoretically. The main emphasis is put on obtaining a reliable analytical estimate for the transition temperature into the excitonic state. As in a double-layer graphene system the total number of fermionic "flavors" is equal to N=8 due to two projections of spin, two valleys, and two layers, the large-NN approximation appears to be especially suitable for theoretical investigation of the system. On the other hand, the large number of flavors makes screening of the bare Coulomb interactions very efficient, which, together with the suppression of backscattering in graphene, leads to an extremely low energy of the excitonic condensation. It is shown that the effect of screening on the excitonic pairing is just as strong in the excitonic state as it is in the normal state. As a result, the value of the excitonic gap \De is found to be in full agreement with the previously obtained estimate for the mean-field transition temperature TcT_c, the maximum possible value Δmax,Tcmax107ϵF\Delta^{\rm max},T_c^{\rm max}\sim 10^{-7} \epsilon_F (ϵF\epsilon_F is the Fermi energy) of both being in 1mK 1{\rm mK} range for a perfectly clean system. This proves that the energy scale 107ϵF\sim 10^{-7} \epsilon_F really sets the upper bound for the transition temperature and invalidates the recently expressed conjecture about the high-temperature first-order transition into the excitonic state. These findings suggest that, unfortunately, the excitonic condensation in graphene double-layers can hardly be realized experimentally.Comment: 21 pages, 5 figures, invited paper to Graphene special issue in Semiconductor Science and Technolog

    Excitonic condensation in a double-layer graphene system

    Full text link
    The possibility of excitonic condensation in a recently proposed electrically biased double-layer graphene system is studied theoretically. The main emphasis is put on obtaining a reliable analytical estimate for the transition temperature into the excitonic state. As in a double-layer graphene system the total number of fermionic "flavors" is equal to N=8 due to two projections of spin, two valleys, and two layers, the large-NN approximation appears to be especially suitable for theoretical investigation of the system. On the other hand, the large number of flavors makes screening of the bare Coulomb interactions very efficient, which, together with the suppression of backscattering in graphene, leads to an extremely low energy of the excitonic condensation. It is shown that the effect of screening on the excitonic pairing is just as strong in the excitonic state as it is in the normal state. As a result, the value of the excitonic gap \De is found to be in full agreement with the previously obtained estimate for the mean-field transition temperature TcT_c, the maximum possible value Δmax,Tcmax107ϵF\Delta^{\rm max},T_c^{\rm max}\sim 10^{-7} \epsilon_F (ϵF\epsilon_F is the Fermi energy) of both being in 1mK 1{\rm mK} range for a perfectly clean system. This proves that the energy scale 107ϵF\sim 10^{-7} \epsilon_F really sets the upper bound for the transition temperature and invalidates the recently expressed conjecture about the high-temperature first-order transition into the excitonic state. These findings suggest that, unfortunately, the excitonic condensation in graphene double-layers can hardly be realized experimentally.Comment: 21 pages, 5 figures, invited paper to Graphene special issue in Semiconductor Science and Technolog

    Excitonic condensation in a double-layer graphene system

    Full text link
    The possibility of excitonic condensation in a recently proposed electrically biased double-layer graphene system is studied theoretically. The main emphasis is put on obtaining a reliable analytical estimate for the transition temperature into the excitonic state. As in a double-layer graphene system the total number of fermionic "flavors" is equal to N=8 due to two projections of spin, two valleys, and two layers, the large-NN approximation appears to be especially suitable for theoretical investigation of the system. On the other hand, the large number of flavors makes screening of the bare Coulomb interactions very efficient, which, together with the suppression of backscattering in graphene, leads to an extremely low energy of the excitonic condensation. It is shown that the effect of screening on the excitonic pairing is just as strong in the excitonic state as it is in the normal state. As a result, the value of the excitonic gap \De is found to be in full agreement with the previously obtained estimate for the mean-field transition temperature TcT_c, the maximum possible value Δmax,Tcmax107ϵF\Delta^{\rm max},T_c^{\rm max}\sim 10^{-7} \epsilon_F (ϵF\epsilon_F is the Fermi energy) of both being in 1mK 1{\rm mK} range for a perfectly clean system. This proves that the energy scale 107ϵF\sim 10^{-7} \epsilon_F really sets the upper bound for the transition temperature and invalidates the recently expressed conjecture about the high-temperature first-order transition into the excitonic state. These findings suggest that, unfortunately, the excitonic condensation in graphene double-layers can hardly be realized experimentally.Comment: 21 pages, 5 figures, invited paper to Graphene special issue in Semiconductor Science and Technolog

    Order-Revealing Encryption and the Hardness of Private Learning

    Full text link
    An order-revealing encryption scheme gives a public procedure by which two ciphertexts can be compared to reveal the ordering of their underlying plaintexts. We show how to use order-revealing encryption to separate computationally efficient PAC learning from efficient (ϵ,δ)(\epsilon, \delta)-differentially private PAC learning. That is, we construct a concept class that is efficiently PAC learnable, but for which every efficient learner fails to be differentially private. This answers a question of Kasiviswanathan et al. (FOCS '08, SIAM J. Comput. '11). To prove our result, we give a generic transformation from an order-revealing encryption scheme into one with strongly correct comparison, which enables the consistent comparison of ciphertexts that are not obtained as the valid encryption of any message. We believe this construction may be of independent interest.Comment: 28 page
    corecore