131 research outputs found

    Proteomics identifies neddylation as a potential therapy target in small intestinal neuroendocrine tumors.

    Get PDF
    Patients with small intestinal neuroendocrine tumors (SI-NETs) frequently develop spread disease; however, the underlying molecular mechanisms of disease progression are not known and effective preventive treatment strategies are lacking. Here, protein expression profiling was performed by HiRIEF-LC-MS in 14 primary SI-NETs from patients with and without liver metastases detected at the time of surgery and initial treatment. Among differentially expressed proteins, overexpression of the ubiquitin-like protein NEDD8 was identified in samples from patients with liver metastasis. Further, NEDD8 correlation analysis indicated co-expression with RBX1, a key component in cullin-RING ubiquitin ligases (CRLs). In vitro inhibition of neddylation with the therapeutic agent pevonedistat (MLN4924) resulted in a dramatic decrease of proliferation in SI-NET cell lines. Subsequent mass spectrometry-based proteomics analysis of pevonedistat effects and effects of the proteasome inhibitor bortezomib revealed stabilization of multiple targets of CRLs including p27, an established tumor suppressor in SI-NET. Silencing of NEDD8 and RBX1 using siRNA resulted in a stabilization of p27, suggesting that the cellular levels of NEDD8 and RBX1 affect CRL activity. Inhibition of CRL activity, by either NEDD8/RBX1 silencing or pevonedistat treatment of cells resulted in induction of apoptosis that could be partially rescued by siRNA-based silencing of p27. Differential expression of both p27 and NEDD8 was confirmed in a second cohort of SI-NET using immunohistochemistry. Collectively, these findings suggest a role for CRLs and the ubiquitin proteasome system in suppression of p27 in SI-NET, and inhibition of neddylation as a putative therapeutic strategy in SI-NET

    Human Amniotic Epithelial Cell Transplantation Induces Markers of Alternative Macrophage Activation and Reduces Established Hepatic Fibrosis

    Get PDF
    Chronic hepatic inflammation from multiple etiologies leads to a fibrogenic response that can progress to cirrhosis and liver failure. Transplantation of human amniotic epithelial cells (hAEC) from term delivered placenta has been shown to decrease mild to moderate hepatic fibrosis in a murine model. To model advanced human liver disease and assess the efficacy of hAEC therapy, we transplanted hAEC in mice with advanced hepatic fibrosis. Immunocompetent C57BL/6 mice were administered carbon tetrachloride (CCl4) twice weekly resulting in bridging fibrosis by 12 weeks. hAEC (2×106) were infused via the tail vein at week 8 or weeks 8 and 10 (single and double dose, respectively). Human cells were detected in mouse liver four weeks after transplantation showing hAEC engraftment. CCl4 treated mice receiving single or double hAEC doses showed a significant but similar decrease in liver fibrosis area associated with decreased activation of collagen-producing hepatic stellate cells and decreased hepatic protein levels of the pro-fibrogenic cytokine, transforming growth factor-beta1. CCl4 administration caused hepatic T cell infiltration that decreased significantly following hAEC transplantation. Hepatic macrophages play a crucial role in both fibrogenesis and fibrosis resolution. Mice exposed to CCl4 demonstrated increased numbers of hepatic macrophages compared to normal mice; the number of macrophages decreased significantly in CCl4 treated mice given hAEC. These mice had significantly lower hepatic protein levels of the chemokine monocyte chemoattractant protein-1 than mice given CCl4 alone. Alternatively activated M2 macrophages are associated with fibrosis resolution. CCl4 treated mice given hAEC showed increased expression of genes associated with M2 macrophages including YM-1, IL-10 and CD206. We provide novel data showing that hAEC transplantation induces a wound healing M2 macrophage phenotype associated with reduction of established hepatic fibrosis that justifies further investigation of this potential cell-based therapy for advanced hepatic fibrosis

    Liver cell therapy: is this the end of the beginning?

    Get PDF
    The prevalence of liver diseases is increasing globally. Orthotopic liver transplantation is widely used to treat liver disease upon organ failure. The complexity of this procedure and finite numbers of healthy organ donors have prompted research into alternative therapeutic options to treat liver disease. This includes the transplantation of liver cells to promote regeneration. While successful, the routine supply of good quality human liver cells is limited. Therefore, renewable and scalable sources of these cells are sought. Liver progenitor and pluripotent stem cells offer potential cell sources that could be used clinically. This review discusses recent approaches in liver cell transplantation and requirements to improve the process, with the ultimate goal being efficient organ regeneration. We also discuss the potential off-target effects of cell-based therapies, and the advantages and drawbacks of current pre-clinical animal models used to study organ senescence, repopulation and regeneration

    Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies

    Full text link

    Strategies to Target Tumor Immunosuppression

    Get PDF
    The tumor microenvironment is currently in the spotlight of cancer immunology research as a key factor impacting tumor development and progression. While antigen-specific immune responses play a crucial role in tumor rejection, the tumor hampers these immune responses by creating an immunosuppressive microenvironment. Recently, major progress has been achieved in the field of cancer immunotherapy, and several groundbreaking clinical trials demonstrated the potency of such therapeutic interventions in patients. Yet, the responses greatly vary among individuals. This calls for the rational design of more efficacious cancer immunotherapeutic interventions that take into consideration the “immune signature” of the tumor. Multimodality treatment regimens that aim to enhance intratumoral homing and activation of antigen-specific immune effector cells, while simultaneously targeting tumor immunosuppression, are pivotal for potent antitumor immunity

    Drug discovery in advanced prostate cancer: translating biology into therapy.

    Get PDF
    Castration-resistant prostate cancer (CRPC) is associated with a poor prognosis and poses considerable therapeutic challenges. Recent genetic and technological advances have provided insights into prostate cancer biology and have enabled the identification of novel drug targets and potent molecularly targeted therapeutics for this disease. In this article, we review recent advances in prostate cancer target identification for drug discovery and discuss their promise and associated challenges. We review the evolving therapeutic landscape of CRPC and discuss issues associated with precision medicine as well as challenges encountered with immunotherapy for this disease. Finally, we envision the future management of CRPC, highlighting the use of circulating biomarkers and modern clinical trial designs

    Novel forsterite/polycaprolactone nanocomposite scaffold for tissue engineering applications

    Full text link
    \u3cp\u3eNovel highly porous nanocomposite scaffolds consisting of polycaprolactone (PCL) and forsterite nanopowder were prepared by a solvent-casting/particle- leaching method. In addition, the effects of forsterite nanopowder contents on the structure of the scaffolds were investigated to provide an appropriate composite for bone regenerative medicine. Results showed that the scaffolds exhibited high porosity (up to 92%) with open pores of 100-300 ÎŒm average diameters. This porosity increased with decreasing forsterite nanopowder content. In addition, the pore walls contained numerous micropores. Microstructure studies showed that the pores were well distributed throughout the structures. Furthermore, the bioactive forsterite nanoparticles were homogenously distributed within the PCL matrix of the scaffolds, which contained up to 30 wt.% forsterite nanopowder. This porous structure with micropores provides the properties required for bone tissue engineering applications.\u3c/p\u3

    Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue regeneration

    Full text link
    \u3cp\u3eBiocomposite scaffolds made from polymers and bioceramics can provide the mechanical structure necessary for osteoinductivity in the growth of new bone. The aim of this research was to investigate the properties of a novel nanocomposite scaffold made from a combination of polycaprolactone (PCL) and forsterite nanopowder which could find use in bone tissue engineering applications. The scaffold itself was fabricated by a method of solvent casting and particle leaching. The effect of forsterite content on the mechanical properties, bioactivity, biodegradability, and cytotoxicity of the scaffolds was investigated. Significant improvement in the mechanical properties was observed in the nanocomposite scaffolds as compared to that seen in the pure PCL scaffolds. Bioactivity was also observed in the nanocomposite scaffolds, a trait which was not present in the pure PCL scaffolds. Biodegradation assay indicated that the addition of forsterite nanopowder could modulate the degradation rate of PCL. In vitro tests of cytotoxicity and osteoblast proliferation showed that the nanocomposite scaffolds were non-cytotoxic, thereby allowing cells to adhere, grow, and proliferate on the surface of these scaffolds. The results obtained in this experiment suggest that the combination of PCL with forsterite nanopowder can be used to form scaffolds suitable for use in bone tissue engineering. The exact material behavior required can be adjusted through variation of the ratio between PCL and forsterite nanopowder used to form the scaffold.\u3c/p\u3
    • 

    corecore