5 research outputs found

    Cataract Surgery with Foldable Single Piece IOLs in Congenital Cataract-Microcornea Syndrome

    No full text
    Objective: To present the visual outcomes and intraocular lens (IOLs) stability after cataract surgery with foldable single piece IOLs in a patient with congenital cataract-microcornea syndrome (CCMC). Case presentation: A 28-year-old woman presented with bilateral microcornea and posterior polar cataract. Her uncorrected (UDVA) and corrected (CDVA) distance visual acuities were 20/100, 20/160 and 20/80, 20/80, respectively. The horizontal cornea diameter was 9.0 mm in both eyes. Anterior chamber angle assessment (ACAA) with Scheie classification showed grade 3 on the superior, inferior, and temporal site and grade 2 on the nasal site in both eyes. On ultrasound biomicroscopy (UBM), the anterior chamber depths were 2.35 mm. OD and 2.41 mm. OS. The axial lengths were 23.28 mm., OD and 22.50 mm. OS with the A-scan ultrasound biometry. The IOLs power calculation with SRK/T formulas was +25.00 diopter OD and +22.50 diopter OS (A-constant 118.4). Phacoemulsification was performed on both eyes. After lens aspiration, ruptured posterior capsule, a common complication occurred. Then anterior vitrectomy was performed. A foldable single piece IOLs without haptic trimming was implanted in the sulcus in each eye. CDVA was 20/63 equally in both eyes. The intraocular pressure was 12 and 14 mmHg. ACAA showed grade 2 and no pigment dispersion. The IOLs had no tilt or decentration. UBM showed the IOLs were in the proper position and were not rubbing the iris. Conclusion: The foldable single piece IOLs without haptic trimming in the sulcus were safely implanted in both eyes with microcornea in CCMC

    Function of MYO7A in the Human RPE and the Validity of Shaker1 Mice as a Model for Usher Syndrome 1B

    No full text
    Phagosome digestion and melanosome motility were studied in human primary RPE cells. RNAi knockdown studies showed that MYO7A functions to constrain rapid, long-range movements of melanosomes. This function is comparable to that in mouse RPE, supporting the use of MYO7A-null mice and the correction of mutant phenotypes in their RPE as an outcome measure in preclinical studies for therapies of Usher syndrome type 1B

    Harmonin (Ush1c) is required in zebrafish Muller glial cells for photoreceptor synaptic development and function

    No full text
    Usher syndrome is the most prevalent cause of hereditary deaf-blindness, characterized by congenital sensorineural hearing impairment and progressive photoreceptor degeneration beginning in childhood or adolescence. Diagnosis and management of this disease are complex, and the molecular changes underlying sensory cell impairment remain poorly understood. Here we characterize two zebrafish models for a severe form of Usher syndrome, Usher syndrome type 1C (USH1C): one model is a mutant with a newly identified ush1c nonsense mutation, and the other is a morpholino knockdown of ush1c. Both have defects in hearing, balance and visual function from the first week of life. Histological analyses reveal specific defects in sensory cell structure that are consistent with these behavioral phenotypes and could implicate MĆ¼ller glia in the retinal pathology of Usher syndrome. This study shows that visual defects associated with loss of ush1c function in zebrafish can be detected from the onset of vision, and thus could be applicable to early diagnosis for USH1C patients

    Harmonin (Ush1c) is required in zebrafish MĆ¼ller glial cells for photoreceptor synaptic development and function

    No full text
    SUMMARY Usher syndrome is the most prevalent cause of hereditary deaf-blindness, characterized by congenital sensorineural hearing impairment and progressive photoreceptor degeneration beginning in childhood or adolescence. Diagnosis and management of this disease are complex, and the molecular changes underlying sensory cell impairment remain poorly understood. Here we characterize two zebrafish models for a severe form of Usher syndrome, Usher syndrome type 1C (USH1C): one model is a mutant with a newly identified ush1c nonsense mutation, and the other is a morpholino knockdown of ush1c. Both have defects in hearing, balance and visual function from the first week of life. Histological analyses reveal specific defects in sensory cell structure that are consistent with these behavioral phenotypes and could implicate MĆ¼ller glia in the retinal pathology of Usher syndrome. This study shows that visual defects associated with loss of ush1c function in zebrafish can be detected from the onset of vision, and thus could be applicable to early diagnosis for USH1C patients
    corecore