31 research outputs found

    Placental sFLT1 is associated with complement activation and syncytiotrophoblast damage in preeclampsia

    No full text
    The immune complement system protects against pathogens; however, excess activation results in disease like hemolytic uremic syndrome, a clinical imitator of preeclampsia. Vascular endothelial factor (VEGF) protects against aberrant complement activation and is inhibited by soluble fms-like tyrosine kinase-1 (sFLT1) in other organs. We hypothesize that sFLT1 promotes complement-mediated placental damage through VEGF inhibition in preeclampsia. Objective: Quantify placental complement activity and sFLT1 expression in preeclampsia, and the subgroup of preeclampsia with hemolysis elevated liver enzymes low platelets (HELLP) syndrome. Methods: Placental complement activation marker C4d, membrane attack complex (MAC), and sFLT1 expression was quantified using immunofluores cence microscopy. Results: Placentas from 18 controls, 25 preeclampsia, including 6 cases of HELLP syndrome were identified. Placental C4d expression was greater in PE (median 6.4 [IQR: 5.1, 8.3]) compared to controls (4.4 [3.6, 5.5]; p = 0.003). MAC expression was also increased in preeclampsia compared to controls (6.5 [5.8, 8.7]; 5.4 [2.9, 5.9], p = 0.001). Placental sFLT1 expression was also higher in preeclampsia (p <0.0001). C4d and MAC were strongly correlated with sFLT1 levels in the placenta (R = 0.72; p < 0.0001 and R = 0.59; p = 0.01, respectively). Complement and sFLT1 expression was elevated in HELLP compared to preeclampsia without laboratory abnormalities, but this difference did not reach statistical significance. Conclusion: Increased placental complement activation and damage was seen in preeclampsia and correlates with sFLT1 expression. Our findings support the importance of the complement pathway in preeclampsia

    Soluble erythropoietin receptor contributes to erythropoietin resistance in end-stage renal disease.

    Get PDF
    Erythropoietin is a growth factor commonly used to manage anemia in patients with chronic kidney disease. A significant clinical challenge is relative resistance to erythropoietin, which leads to use of successively higher erythropoietin doses, failure to achieve target hemoglobin levels, and increased risk of adverse outcomes. Erythropoietin acts through the erythropoietin receptor (EpoR) present in erythroblasts. Alternative mRNA splicing produces a soluble form of EpoR (sEpoR) found in human blood, however its role in anemia is not known.Using archived serum samples obtained from subjects with end stage kidney disease we show that sEpoR is detectable as a 27kDa protein in the serum of dialysis patients, and that higher serum sEpoR levels correlate with increased erythropoietin requirements. Soluble EpoR inhibits erythropoietin mediated signal transducer and activator of transcription 5 (Stat5) phosphorylation in cell lines expressing EpoR. Importantly, we demonstrate that serum from patients with elevated sEpoR levels blocks this phosphorylation in ex vivo studies. Finally, we show that sEpoR is increased in the supernatant of a human erythroleukaemia cell line when stimulated by inflammatory mediators such as interleukin-6 and tumor necrosis factor alpha implying a link between inflammation and erythropoietin resistance.These observations suggest that sEpoR levels may contribute to erythropoietin resistance in end stage renal disease, and that sEpoR production may be mediated by pro-inflammatory cytokines
    corecore