287 research outputs found

    Topological Shocks in Burgers Turbulence

    Full text link
    The dynamics of the multi-dimensional randomly forced Burgers equation is studied in the limit of vanishing viscosity. It is shown both theoretically and numerically that the shocks have a universal global structure which is determined by the topology of the configuration space. This structure is shown to be particularly rigid for the case of periodic boundary conditions.Comment: 4 pages, 4 figures, RevTex4, published versio

    Reduction of Algebraic Parametric Systems by Rectification of their Affine Expanded Lie Symmetries

    Get PDF
    Lie group theory states that knowledge of a mm-parameters solvable group of symmetries of a system of ordinary differential equations allows to reduce by mm the number of equations. We apply this principle by finding some \emph{affine derivations} that induces \emph{expanded} Lie point symmetries of considered system. By rewriting original problem in an invariant coordinates set for these symmetries, we \emph{reduce} the number of involved parameters. We present an algorithm based on this standpoint whose arithmetic complexity is \emph{quasi-polynomial} in input's size.Comment: Before analysing an algebraic system (differential or not), one can generally reduce the number of parameters defining the system behavior by studying the system's Lie symmetrie

    Herman's Theory Revisited

    Full text link
    We prove that a C2+αC^{2+\alpha}-smooth orientation-preserving circle diffeomorphism with rotation number in Diophantine class DδD_\delta, 0<δ<α10<\delta<\alpha\le1, is C1+αδC^{1+\alpha-\delta}-smoothly conjugate to a rigid rotation. We also derive the most precise version of Denjoy's inequality for such diffeomorphisms.Comment: 10 page

    Ballistic deposition patterns beneath a growing KPZ interface

    Full text link
    We consider a (1+1)-dimensional ballistic deposition process with next-nearest neighbor interaction, which belongs to the KPZ universality class, and introduce for this discrete model a variational formulation similar to that for the randomly forced continuous Burgers equation. This allows to identify the characteristic structures in the bulk of a growing aggregate ("clusters" and "crevices") with minimizers and shocks in the Burgers turbulence, and to introduce a new kind of equipped Airy process for ballistic growth. We dub it the "hairy Airy process" and investigate its statistics numerically. We also identify scaling laws that characterize the ballistic deposition patterns in the bulk: the law of "thinning" of the forest of clusters with increasing height, the law of transversal fluctuations of cluster boundaries, and the size distribution of clusters. The corresponding critical exponents are determined exactly based on the analogy with the Burgers turbulence and simple scaling considerations.Comment: 10 pages, 5 figures. Minor edits: typo corrected, added explanation of two acronyms. The text is essentially equivalent to version

    Multifractality of the Feigenbaum attractor and fractional derivatives

    Full text link
    It is shown that fractional derivatives of the (integrated) invariant measure of the Feigenbaum map at the onset of chaos have power-law tails in their cumulative distributions, whose exponents can be related to the spectrum of singularities f(α)f(\alpha). This is a new way of characterizing multifractality in dynamical systems, so far applied only to multifractal random functions (Frisch and Matsumoto (J. Stat. Phys. 108:1181, 2002)). The relation between the thermodynamic approach (Vul, Sinai and Khanin (Russian Math. Surveys 39:1, 1984)) and that based on singularities of the invariant measures is also examined. The theory for fractional derivatives is developed from a heuristic point view and tested by very accurate simulations.Comment: 20 pages, 5 figures, J.Stat.Phys. in pres

    Coexistence of single-mode and multi-longitudinal mode emission in the ring laser model

    Full text link
    A homogeneously broadened unidirectonal ring laser can emit in several longitudinal modes for large enough pump and cavity length because of Rabi splitting induced gain. This is the so called Risken-Nummedal-Graham-Haken (RNGH) instability. We investigate numerically the properties of the multi-mode solution. We show that this solution can coexist with the single-mode one, and its stability domain can extend to pump values smaller than the critical pump of the RNGH instability. Morevoer, we show that the multi-mode solution for large pump values is affected by two different instabilities: a pitchfork bifurcation, which preserves phase-locking, and a Hopf bifurcation, which destroys it.Comment: 14 pages, 7 figure

    An experimental evaluation of a loop versus a reference design for two-channel microarrays

    Get PDF
    Motivation: Despite theoretical arguments that socalled "loop designs" of two-channel DNA microarray experiments are more efficient, biologists keep on using "reference designs". We describe two sets of microarray experiments with RNA from two different biological systems (TPA-stimulated mammalian cells and Streptomyces coelicor). In each case, both a loop and a reference design were performed using the same RNA preparations with the aim to study their relative efficiency. Results: The results of these experiments show that (1) the loop design attains a much higher precision than the reference design, (2) multiplicative spot effects are a large source of variability, and if they are not accounted for in the mathematical model, for example by taking log-ratios or including spot-effects, then the model will perform poorly. The first result is reinforced by a simulation study. Practical recommendations are given on how simple loop designs can be extended to more realistic experimental designs and how standard statistical methods allow the experimentalist to use and interpret the results from loop designs in practice
    corecore