5 research outputs found

    Novel Oxysterols Have Pro-Osteogenic and Anti-Adipogenic Effects In Vitro and Induce Spinal Fusion In Vivo

    Get PDF
    ABSTRACT Stimulation of bone formation by osteoinductive materials is of great clinical importance in spinal fusion surgery, repair of bone fractures, and in the treatment of osteoporosis. We previously reported that specific naturally occurring oxysterols including 20(S)-hydroxycholesterol (20S) induce the osteogenic differentiation of pluripotent mesenchymal cells, while inhibiting their adipogenic differentiation. Here we report the characterization of two structural analogues of 20S, Oxy34 and Oxy49, which induce the osteogenic and inhibit the adipogenic differentiation of bone marrow stromal cells (MSC) through activation of Hedgehog (Hh) signaling. Treatment of M2-10B4 MSC with Oxy34 or Oxy49 induced the expression of osteogenic differentiation markers Runx2, Osterix (Osx), alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OCN), as well as ALP enzymatic activity and robust mineralization. Treatment with oxysterols together with PPARg activator, troglitazone (Tro), inhibited mRNA expression for adipogenic genes PPARg, LPL, and aP2, and inhibited the formation of adipocytes. Efficacy of Oxy34 and Oxy49 in stimulating bone formation in vivo was assessed using the posterolateral intertransverse process rat spinal fusion model. Rats receiving collagen implants with Oxy 34 or Oxy49 showed comparable osteogenic efficacy to BMP2/collagen implants as measured by radiography, MicroCT, and manual inspection. Histological analysis showed trabecular and cortical bone formation by oxysterols and rhBMP2 within the fusion mass, with robust adipogenesis in BMP2-induced bone and significantly less adipocytes in oxysterol-induced bone. These data suggest that Oxy34 and Oxy49 are effective novel osteoinductive molecules and may be suitable candidates for further development and use in orthopedic indications requiring local bone formation

    Article Novel Oxysterols Have Pro-Osteogenic and Anti-Adipogenic Effects In Vitro and Induce Spinal Fusion In Vivo

    Get PDF
    Histological analysis showed trabecular and cortical bone formation by oxysterols and rhBMP2 within the fusion mass, with robust adipogenesis in BMP2-induced bone and significantly less adipocytes in oxysterol-induced bone. These data suggest that Oxy34 and Oxy49 are effective novel osteoinductive molecules and may be suitable candidates for further development and use in orthopaedic indications requiring local bone formation

    Practical Synthesis and Elaboration of Methyl 7-Chloroindole-4-carboxylate

    No full text

    Arylaminoethyl amides as noncovalent inhibitors of cathepsin S. Part 2: Optimization of P1 and N-aryl.

    No full text
    A systematic study of anilines led to the discovery of a metabolically robust fluoroindoline replacement for the alkoxy aniline toxicophore in 1. Investigations of the P1 pocket resulted in the discovery of a wide tolerance of functionality leading to the discovery of 11 as a potent and selective inhibitor of cathepsin S

    Synthesis and evaluation of arylaminoethyl amides as noncovalent inhibitors of cathepsin S. Part 3: heterocyclic P3.

    No full text
    A series of N(alpha)-2-benzoxazolyl-alpha-amino acid-(arylaminoethyl)amides were identified as potent, selective, and noncovalent inhibitors of cathepsin S. Structure-activity relationships including strategies for modulating the selectivities among cathepsins S, K, and L, and in vivo pharmacokinetics are discussed. A X-ray structure of compound 3 bound to the active site of cathepsin S is also reported
    corecore