30 research outputs found

    Analyse der Thrombozyten-Endothelzell-Interaktion bei hepatischer Ischämie-Reperfusion

    Get PDF
    96 Der hepatische Ischämie-Reperfusionsschaden stellt ein relevantes klinisches Problem nach Lebertransplantation und Leberteilresektion sowie nach hämorrhagischem Schock dar. Es gibt zunehmend Hinweise darauf, daß Thrombozyten an der Ausbildung des hepatischen Ischämie-Reperfusionsschadens beteiligt sind. Bislang liegt jedoch keine Studie vor, in welcher die Mechanismen der Interaktion von Thrombozyten mit dem postischämischen hepatischen Endothel in vivo analysiert wurden. Insbesondere ist nicht geklärt, inwiefern diese Interaktion die Induktion und den Schweregrad des hepatozellulären Schadens beeinflußt. Ziele der Studie waren daher (1) die Thrombozyten-Endothelzell-Interaktion nach hepatischer I/R mittels intravitaler Fluoreszenzmikroskopie systematisch in Abhängigkeit von der Ischämie- und Reperfusionszeit quantitativ zu analysieren, (2) zu untersuchen, welche Mechanismen die Thrombozyten-Endothelzell-Interaktion in der Leber vermitteln und (3) zu analysieren, welchen Einfluß diese Interaktion auf den Ischämie-Reperfusionsschaden der Leber hat. An einem etablierten murinen Modell der warmen hepatischen Ischämie-Reperfusion wurde die Thrombozyten-Endothelzell-Interaktion mittels intravitaler Videofluoreszenzmikroskopie untersucht. Thrombozyten wurden von separaten syngenen Spendertieren isoliert, ex vivo mit Rhodamin-6G markiert, intravenös zu den jeweiligen Reperfusionszeitpunkten appliziert und bezüglich ihrer Interaktion mit dem Endothel der hepatischen Mikrogefäße quantitativ analysiert. Zur begleitenden Analyse des hepatischen Ischämie-Reperfusionsschadens wurden die sinusoidale Perfusionsrate, die Aktivität der Leberenzyme GOT/GPT im Serum und die Apoptosemarker Caspase-3- Aktivität und Anzahl TUNEL-positiver Zellen im Lebergewebe bestimmt. Durch Verwendung P-Selektin-defizienter Tiere (sowohl Thrombozytenspender als auch Thrombozytenempfänger) wurde die Rolle von endothelialem vs. thrombozytärem PSelektin für die Thrombozyten-Endothelzell-Interaktion untersucht. Des weiteren wurde versucht, durch Applikation eines Fibrinogen-Antikörpers die differentielle Bedeutung von Thrombozyten im Vergleich zu Leukozyten an der Ausbildung des Organschadens der Leber nach I/R in vivo aufklären. Es konnte gezeigt werden, daß hepatische Ischämie-Reperfusion eine Interaktion von Thrombozyten mit dem Endothel in präsinusoidalen Arteriolen, Sinusoiden und postsinusoidalen Venolen induzierte. Das Ausmaß dieser Interaktion war von der Ischämiedauer abhängig, während hingegen die Reperfusionsdauer keinen wesentlichen Einfluß hatte. Die vermehrte Thrombozytenadhäsion ging mit einem signifikanten Anstieg des mikrovaskulären und zellulären Organschadens einher. Untersuchungen an P-Selektin-defizienten Tieren demonstrierten, daß das endotheliale und nicht das thrombozytäre P-Selektin das Rollen und die nachfolgende Adhärenz von Thrombozyten in Arteriolen und Venolen der Leber vermittelte. Darüberhinaus war der postischämische Organschaden in P-Selektin-defizienten Tieren signifikant reduziert. Mittels der Blockade von Fibrinogen während der Reperfusionsphase konnte gezeigt werden, daß Fibrin(ogen) die postischämische Thrombozytenadhäsion vermittelte, an der Leukozytenadhärenz jedoch nicht beteiligt war. Die selektive Hemmung der Thrombozyten-Endothelzell-Interaktion führte zu einer signifikanten Reduktion des mikrovaskulären Schadens sowie der Apoptoseinduktion in der Leber nach Ischämie- Reperfusion. Somit demonstriert diese Studie erstmals in vivo, daß den Thrombozyten bei der Ausbildung des hepatischen I/R-Schadens eine wichtige Bedeutung zukommt

    Surgery for Colorectal Cancer - Trends, Developments, and Future Perspectives

    Get PDF
    Background: Although colorectal surgery is long established as the mainstay treatment for colon cancer, certain topics regarding technical fine-tuning to increase postsurgical recurrence-free survival have remained a matter of debate throughout the past years. These include complete mesocolic excision (CME), treatment strategies for metastatic disease, significance of hyperthermic intraperitoneal chemotherapy (HIPEC), and surgical techniques for the treatment of colorectal cancer recurrence. In addition, new surgical techniques have been introduced in oncologic colorectal surgery, and their potential to provide sufficiently radical resection has yet to be proven. Methods: A structured review of the literature was performed to identify the current state of the art with regard to the mentioned key issues in colorectal surgery. Results: This article provides a comprehensive review of the current literature addressing the above-mentioned current challenges in colorectal surgery. The focus lies on the impact of CME and, in relation to this, on lymph node dissection, as well as on treatment of metastatic disease including peritoneal spread, and finally on the treatment of recurrent disease. Conclusion: Uniformly, the current literature reveals that surgery aiming at complete malignancy elimination within multimodal treatment approaches represents the fundamental quantum leap for the achievement of long-term tumor-free survival. (C) 2016 S. Karger GmbH, Freibur

    ESAM supports neutrophil extravasation, activation of Rho, and VEGF-induced vascular permeability

    Get PDF
    Endothelial cell–selective adhesion molecule (ESAM) is specifically expressed at endothelial tight junctions and on platelets. To test whether ESAM is involved in leukocyte extravasation, we have generated mice carrying a disrupted ESAM gene and analyzed them in three different inflammation models. We found that recruitment of lymphocytes into inflamed skin was unaffected by the gene disruption. However, the migration of neutrophils into chemically inflamed peritoneum was inhibited by 70% at 2 h after stimulation, recovering at later time points. Analyzing neutrophil extravasation directly by intravital microscopy in the cremaster muscle revealed that leukocyte extravasation was reduced (50%) in ESAM−/− mice without affecting leukocyte rolling and adhesion. Depletion of >98% of circulating platelets did not abolish the ESAM deficiency–related inhibitory effect on neutrophil extravasation, indicating that it is only ESAM at endothelial tight junctions that is relevant for the extravasation process. Knocking down ESAM expression in endothelial cells resulted in reduced levels of activated Rho, a GTPase implicated in the destabilization of tight junctions. Indeed, vascular permeability stimulated by vascular endothelial growth factor was reduced in ESAM−/− mice. Collectively, ESAM at endothelial tight junctions participates in the migration of neutrophils through the vessel wall, possibly by influencing endothelial cell contacts

    To Protect Fatty Livers from Ischemia Reperfusion Injury: Role of Ischemic Postconditioning

    Get PDF
    BACKGROUND The benefit of ischemic postconditioning (IPostC) might be the throttled inflow following cold ischemia. The current study investigated advantage and mechanisms of IPostC in healthy and fatty rat livers. METHODS Male SD rats received a high-fat diet to induce fatty livers. Isolated liver perfusion was performed after 24 h ischemia at 4°C as well as in vivo experiments after 90 min warm ischemia. The so-called follow-up perfusions served to investigate the hypothesis that medium from IPostC experiments is less harmful. Lactate dehydrogenase (LDH), transaminases, different cytokines, and gene expressions, respectively, were measured. RESULTS Fatty livers showed histologically mild inflammation and moderate to severe fat storage. IPostC reduced LDH and TXB2 in healthy and fatty livers and increased bile flow. LDH, TNF-\textgreeka, and IL-6 levels in serum decreased after warm ischemia + IPostC. The gene expressions of Tnf, IL-6, Ccl2, and Ripk3 were downregulated in vivo after IPostC. CONCLUSIONS IPostC showed protective effects after ischemia in situ and in vivo in healthy and fatty livers. Restricted cyclic inflow was an important mechanism and further suggested involvement of necroptosis. IPostC represents a promising and easy intervention to improve outcomes after transplantation

    Ischemic Postconditioning (IPostC) Protects Fibrotic and Cirrhotic Rat Livers after Warm Ischemia

    Get PDF
    Background. Decreased organ function following liver resection is a major clinical issue. The practical method of ischemic postconditioning (IPostC) has been studied in heart diseases, but no data exist regarding fibrotic livers. Aims. We aimed to determine whether IPostC could protect healthy, fibrotic, and cirrhotic livers from ischemia reperfusion injury (IRI). Methods. Fibrosis was induced in male SD rats using bile duct ligation (BDL, 4 weeks), and cirrhosis was induced using thioacetamide (TAA, 18 weeks). Fibrosis and cirrhosis were histologically confirmed using HE and EvG staining. For healthy, fibrotic, and cirrhotic livers, isolated liver perfusion with 90 min of warm ischemia was performed in three groups (each with n=8): control, IPostC 8x20 sec, and IPostC 4x60 sec. additionally, healthy livers were investigated during a follow-up study. Lactate dehydrogenase (LDH) and thromboxane B-2 (TXB2) in the perfusate, as well as bile flow (healthy/TAA) and portal perfusion pressure, were measured. Results. LDH and TXB2 were reduced, and bile flow was increased by IPostC, mainly in total and in the late phase of reperfusion. The follow-up study showed that the perfusate derived from a postconditioned group had much less damaging potential than perfusate derived from the nonpostconditioned group. Conclusion. IPostC following warm ischemia protects healthy, fibrotic, and cirrhotic livers against IRI. Reduced efflux of TXB2 is one possible mechanism for this effect of IPostC and increases sinusoidal microcirculation. These findings may help to improve organ function and recovery of patients after liver resection

    Differential significance of early surgical complications for acute and long-term recurrence-free survival following surgical resection of hepatocellular carcinoma: do comorbidities play a role?

    Get PDF
    Background Postoperative complications of Clavien-Dindo grade 3 or more are of prognostic significance in patients who undergo liver resection for hepatocellular carcinoma (HCC). However, perioperative mortality and patient comorbidities represent relevant factors that interfere with postoperative long-term survival. To clarify this, a retrospective single-center study was carried out. Patients and methods Patient data were prospectively collected in a continuously updated liver resection database. Overall, 184 consecutive patients who underwent liver resection for HCC with a curative intent between March 2003 and December 2013 were selected for the study. The patients were assigned to two groups according to the presence or absence of postoperative complications. Pre-existing comorbidities, perioperative mortality, surgical outcome, and long-term survival data were analyzed. Results Postoperative complications requiring revision surgery were identified in 17.4% of the patients. The in-house mortality rate was 4.8%. Compared with patients without complications, patients with complications were older and had significantly more pre-existing comorbidities, more advanced tumors, more intrahepatic metastasis, longer operation times, greater blood loss, and more extensive resections. The overall 5-year survival rates were 40.1 and 52.5% in patients with or without postoperative complications, respectively. The corresponding 5-year recurrence-free survival rates were 46.3 and 46.7% (perioperative mortality excluded). Multivariate analysis showed that elevation of the Charlson Comorbidity Index was associated independently with decreased overall and recurrence-free survival. Conclusion In patients with HCC, posthepatectomy complications are confirmed to have predictive value. However, closer analysis and exclusion of perioperative mortality effects show an independent impact of pre-existing comorbidities on long-term overall und recurrence-free survival

    Urokinase-Type Plasminogen Activator Promotes Paracellular Transmigration of Neutrophils Via Mac-1, But Independently of Urokinase-Type Plasminogen Activator Receptor

    Get PDF
    Background: Urokinase-type plasminogen activator (uPA) has recently been implicated in the pathogenesis of ischemia-reperfusion (I/R) injury. The underlying mechanisms remain largely unclear. Methods and Results: Using in vivo microscopy on the mouse cremaster muscle, I/R-elicited firm adherence and transmigration of neutrophils were found to be significantly diminished in uPA-deficient mice and in mice treated with the uPA inhibitor WX-340, but not in uPA receptor (uPAR)–deficient mice. Interestingly, postischemic leukocyte responses were significantly reduced on blockade of the integrin CD11b/Mac-1, which also serves as uPAR receptor. Using a cell transfer technique, postischemic adherence and transmigration of wild-type leukocytes were significantly decreased in uPA-deficient animals, whereas uPA-deficient leukocytes exhibited a selectively reduced transmigration in wild-type animals. On I/R or stimulation with recombinant uPA, >90% of firmly adherent leukocytes colocalized with CD31-immunoreactive endothelial junctions as detected by in vivo fluorescence microscopy. In a model of hepatic I/R, treatment with WX-340 significantly attenuated postischemic neutrophil infiltration and tissue injury. Conclusions: Our data suggest that endothelial uPA promotes intravascular adherence, whereas leukocyte uPA facilitates the subsequent paracellular transmigration of neutrophils during I/R. This process is regulated via CD11b/Mac-1, and does not require uPAR. Pharmacological blockade of uPA interferes with these events and effectively attenuates postischemic tissue injury

    Plasminogen Activator Inhibitor-1 Promotes Neutrophil Infiltration and Tissue Injury on Ischemia–Reperfusion

    Get PDF
    Objective Ischemia-reperfusion (I/R) injury significantly contributes to organ dysfunction and failure after myocardial infarction, stroke, and transplantation. In addition to its established role in the fibrinolytic system, plasminogen activator inhibitor-1 has recently been implicated in the pathogenesis of I/R injury. The underlying mechanisms remain largely obscure. Approach and Results Using different in vivo microscopy techniques as well as ex vivo analyses and in vitro assays, we identified that plasminogen activator inhibitor-1 rapidly accumulates on microvascular endothelial cells on I/R enabling this protease inhibitor to exhibit previously unrecognized functional properties by inducing an increase in the affinity of 2 integrins in intravascularly rolling neutrophils. These events are mediated through low-density lipoprotein receptor-related protein-1 and mitogen-activated protein kinase-dependent signaling pathways that initiate intravascular adherence of these immune cells to the microvascular endothelium. Subsequent to this process, extravasating neutrophils disrupt endothelial junctions and promote the postischemic microvascular leakage. Conversely, deficiency of plasminogen activator inhibitor-1 effectively reversed leukocyte infiltration, microvascular dysfunction, and tissue injury on experimental I/R without exhibiting side effects on microvascular hemostasis. Conclusions Our experimental data provide novel insights into the nonfibrinolytic properties of the fibrinolytic system and emphasize plasminogen activator inhibitor-1 as a promising target for the prevention and treatment of I/R injury

    In vivo imaging and quantitative analysis of leukocyte directional migration and polarization in inflamed tissue

    Get PDF
    Directional migration of transmigrated leukocytes to the site of injury is a central event in the inflammatory response. Here, we present an in vivo chemotaxis assay enabling the visualization and quantitative analysis of subtype-specific directional motility and polarization of leukocytes in their natural 3D microenvironment. Our technique comprises the combination of i) semi-automated in situ microinjection of chemoattractants or bacteria as local chemotactic stimulus, ii) in vivo near-infrared reflected-light oblique transillumination (RLOT) microscopy for the visualization of leukocyte motility and morphology, and iii) in vivo fluorescence microscopy for the visualization of different leukocyte subpopulations or fluorescence-labeled bacteria. Leukocyte motility parameters are quantified off-line in digitized video sequences using computer-assisted single cell tracking. Here, we show that perivenular microinjection of chemoattractants [macrophage inflammatory protein-1alpha (MIP-1alpha/Ccl3), platelet-activating factor (PAF)] or E. coli into the murine cremaster muscle induces target-oriented intravascular adhesion and transmigration as well as polarization and directional interstitial migration of leukocytes towards the locally administered stimuli. Moreover, we describe a crucial role of Rho kinase for the regulation of directional motility and polarization of transmigrated leukocytes in vivo. Finally, combining in vivo RLOT and fluorescence microscopy in Cx3CR1(gfp/gfp) mice (mice exhibiting green fluorescent protein-labeled monocytes), we are able to demonstrate differences in the migratory behavior of monocytes and neutrophils.Taken together, we propose a novel approach for investigating the mechanisms and spatiotemporal dynamics of subtype-specific motility and polarization of leukocytes during their directional interstitial migration in vivo

    Modulation of Glutathione Hemostasis by Inhibition of 12/15-Lipoxygenase Prevents ROS-Mediated Cell Death after Hepatic Ischemia and Reperfusion

    Get PDF
    Background. Reactive oxygen species-(ROS-) mediated ischemia-reperfusion injury (IRI) detrimentally impacts liver transplantation and resection. 12/15-Lipoxygenase (12/15-LOX), an antagonistic protein of the glutathione peroxidase 4 (GPX4) signaling cascade, was proven to mediate cell death in postischemic cerebral and myocardial tissue. The aim of this study was to investigate the impact of 12/15-LOX inhibition on hepatic IRI. Methods. Livers of C57BL/6 mice were exposed to 60 minutes of partial warm ischemia and 90 minutes of reperfusion after previous Baicalein administration, an inhibitor of 12/15-LOX. Tissue samples were analyzed by TUNEL assay, Western blot, and spectral photometry. Results. TUNEL labeling showed a significant reduction of hepatic cell death following baicalein pretreatment. Western Blot analysis revealed a significant downregulation of Jun-amino-terminal-kinase (JNK), caspase-3, and poly-ADP-ribose-polymerase (PARP), besides considerably lowered p44/42MAP- kinase (ERK1/2) expression after Baicalein administration. A significant elevation of glutathione oxidation was measured in Baicalein pretreated livers. Conclusion. Our data show that inhibition of 12/15-lipoxygenase causes significant cell death reduction after hepatic ischemia and reperfusion by enhancing glutathione metabolism. We conclude that GPX4-dependent cell death signaling cascade might play a major role in development of hepatic IRI, in which the investigated proteins JNK, caspase3, ERK1/2, and PARP might contribute to tissue damage
    corecore