29,921 research outputs found
Analyzing Delay in Wireless Multi-hop Heterogeneous Body Area Networks
With increase in ageing population, health care market keeps growing. There
is a need for monitoring of health issues. Wireless Body Area Network (WBAN)
consists of wireless sensors attached on or inside human body for monitoring
vital health related problems e.g, Electro Cardiogram (ECG), Electro
Encephalogram (EEG), ElectronyStagmography (ENG) etc. Due to life threatening
situations, timely sending of data is essential. For data to reach health care
center, there must be a proper way of sending data through reliable connection
and with minimum delay. In this paper transmission delay of different paths,
through which data is sent from sensor to health care center over heterogeneous
multi-hop wireless channel is analyzed. Data of medical related diseases is
sent through three different paths. In all three paths, data from sensors first
reaches ZigBee, which is the common link in all three paths. Wireless Local
Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX),
Universal Mobile Telecommunication System (UMTS) are connected with ZigBee.
Each network (WLAN, WiMAX, UMTS) is setup according to environmental
conditions, suitability of device and availability of structure for that
device. Data from these networks is sent to IP-Cloud, which is further
connected to health care center. Delay of data reaching each device is
calculated and represented graphically. Main aim of this paper is to calculate
delay of each link in each path over multi-hop wireless channel.Comment: arXiv admin note: substantial text overlap with arXiv:1208.240
SIMPLE: Stable Increased-throughput Multi-hop Protocol for Link Efficiency in Wireless Body Area Networks
In this work, we propose a reliable, power efficient and high throughput
routing protocol for Wireless Body Area Networks (WBANs). We use multi-hop
topology to achieve minimum energy consumption and longer network lifetime. We
propose a cost function to select parent node or forwarder. Proposed cost
function selects a parent node which has high residual energy and minimum
distance to sink. Residual energy parameter balances the energy consumption
among the sensor nodes while distance parameter ensures successful packet
delivery to sink. Simulation results show that our proposed protocol maximize
the network stability period and nodes stay alive for longer period. Longer
stability period contributes high packet delivery to sink which is major
interest for continuous patient monitoring.Comment: IEEE 8th International Conference on Broadband and Wireless
Computing, Communication and Applications (BWCCA'13), Compiegne, Franc
Evolution of the proton sd states in neutron-rich Ca isotopes
We analyze the evolution with increasing isospin asymmetry of the proton
single-particle states 2s1/2 and 1d3/2 in Ca isotopes, using non-relativistic
and relativistic mean field approaches. Both models give similar trends and it
is shown that this evolution is sensitive to the neutron shell structure, the
two states becoming more or less close depending on the neutron orbitals which
are filled. In the regions where the states get closer some parametrizations
predict an inversion between them. This inversion occurs near Ca as well
as very far from stability where the two states systematically cross each other
if the drip line predicted in the model is located far enough. We study in
detail the modification of the two single-particle energies by using the
equivalent potential in the Schroedinger-like Skyrme-Hartree-Fock equations.
The role played by central, kinetic and spin-orbit contributions is discussed.
We finally show that the effect of a tensor component in the effective
interaction considerably favors the inversion of the two proton states in
Ca.Comment: 7 figure
M-GEAR: Gateway-Based Energy-Aware Multi-Hop Routing Protocol for WSNs
In this research work, we advise gateway based energy-efficient routing
protocol (M-GEAR) for Wireless Sensor Networks (WSNs). We divide the sensor
nodes into four logical regions on the basis of their location in the sensing
field. We install Base Station (BS) out of the sensing area and a gateway node
at the centre of the sensing area. If the distance of a sensor node from BS or
gateway is less than predefined distance threshold, the node uses direct
communication. We divide the rest of nodes into two equal regions whose
distance is beyond the threshold distance. We select cluster heads (CHs)in each
region which are independent of the other region. These CHs are selected on the
basis of a probability. We compare performance of our protocol with LEACH (Low
Energy Adaptive Clustering Hierarchy). Performance analysis and compared
statistic results show that our proposed protocol perform well in terms of
energy consumption and network lifetime.Comment: IEEE 8th International Conference on Broadband and Wireless
Computing, Communication and Applications (BWCCA'13), Compiegne, Franc
Two flavors of dynamical quarks on anisotropic lattices
We report on our study of two-flavor full QCD on anisotropic lattices using
-improved Wilson quarks coupled with an RG-improved glue. The bare gauge
and quark anisotropies corresponding to the renormalized anisotropy
are determined as functions of and , which
covers the region of spatial lattice spacings --0.16 fm and
--0.9. The calibrations of the bare anisotropies are
performed with the Wilson loop and the meson dispersion relation at 4 lattice
cutoffs and 5--6 quark masses. Using the calibration results we calculate the
meson mass spectrum and the Sommer scale . We confirm that the values of
calculated for the calibration using pseudo scalar and vector meson
energy momentum dispersion relation coincide in the continuum limit within
errors. This work serves to lay ground toward studies of heavy quark systems
and thermodynamics of QCD including the extraction of the equation of state in
the continuum limit using Wilson-type quark actions.Comment: 16 pages, 23 figures, Version accepted for publication in Physical
Review
Probing the link between oestrogen receptors and oesophageal cancer
<p>Abstract</p> <p>Background</p> <p>Human oesophageal carcinoma is considered to be one of the most aggressive malignancies and has a very poor prognosis. The incidence of oesophageal cancer shows a gender bias and is higher in males compared with females, the ratio between males and females varying from 3:1 to 7:1. This sex ratio is not entirely attributable to differences in the prevalence of known risk factors between the sexes. The potential role of oestrogen receptors (ER) in oesophageal cancer has been debated for several years but the significance of the receptors in this cancer remains unknown. Most of the work has been based on immunohistochemistry and has not been validated with other available techniques. The inconsistencies in the published literature on the link between ER expression and oesophageal cancer warrant a thorough evaluation of the potential role of ERs in this malignancy. Even the expression of the two ER isoforms, ERα and ERÎČ, and its implications for outcome of treatments in histological subtypes of oesophageal tumours is ill defined. The aim of this article is to provide updated information from the available literature on the current status of ER expression in oesophageal cancer and to discuss its potential therapeutic role.</p> <p>Methods and Results</p> <p>We performed a comprehensive literature search and analysed the results regarding ER expression in oesophageal tumours with special emphasis on expression of different oestrogen receptors and the role of sex hormones in oesophageal cancer. This article also focuses on the significance of the two main ER subtypes and mechanisms underlying the presumed male predominance of this disease.</p> <p>Conclusion</p> <p>We postulate that differential oestrogen receptor status may be considered a biomarker of poor clinical outcome based on tissue dedifferentiation or advanced stage of the disease. Further, if we can establish the importance of oestrogen and its receptors in the context of oesophageal cancer, then this may lead to a new future direction in the management of this malignancy.</p
A Robust Regression-Based Stock Exchange Forecasting and Determination of Correlation between Stock Markets
Knowledge-based decision support systems for financial management are an important part of investment plans. Investors are avoiding investing in traditional investment areas such as banks due to low return on investment. The stock exchange is one of the major areas for investment presently. Various non-linear and complex factors affect the stock exchange. A robust stock exchange forecasting system remains an important need. From this line of research, we evaluate the performance of a regression-based model to check the robustness over large datasets. We also evaluate the effect of top stock exchange markets on each other. We evaluate our proposed model on the top 4 stock exchangesâNew York, London, NASDAQ and Karachi stock exchange. We also evaluate our model on the top 3 companiesâApple, Microsoft, and Google. A huge (Big Data) historical data is gathered from Yahoo finance consisting of 20 years. Such huge data creates a Big Data problem. The performance of our system is evaluated on a 1-step, 6-step, and 12-step forecast. The experiments show that the proposed system produces excellent results. The results are presented in terms of Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)
Scaling behavior of with NRQCD
We investigate the scaling behavior of the meson decay constant and
at , employing the NRQCD heavy quark
action and the clover light quark action. Mixing effect from dimension-4
operator in the heavy-light axial-vector current is studied, and we find that
the dependence of is significantly reduced. Our preliminary result
for the decay constants in the quenched approximation is
MeV, MeV, and
.Comment: LATTICE98(matrixelement), 3 pages, 3 eps figure
Non-Perturbative Determination of in Three-flavor Dynamical QCD
We present a fully non-perturbative determination of the improvement
coefficient in three-flavor dynamical QCD for the RG improved as
well as the plaquette gauge actions, using the Schr\"odinger functional scheme.
Results are compared with one-loop estimates at weak gauge coupling.Comment: 3 pages, 6 figures, Lattice2002(Improvement and Renormalization),
Unnecessary files are remove
- âŠ