25,108 research outputs found

    Analyzing Delay in Wireless Multi-hop Heterogeneous Body Area Networks

    Full text link
    With increase in ageing population, health care market keeps growing. There is a need for monitoring of health issues. Wireless Body Area Network (WBAN) consists of wireless sensors attached on or inside human body for monitoring vital health related problems e.g, Electro Cardiogram (ECG), Electro Encephalogram (EEG), ElectronyStagmography (ENG) etc. Due to life threatening situations, timely sending of data is essential. For data to reach health care center, there must be a proper way of sending data through reliable connection and with minimum delay. In this paper transmission delay of different paths, through which data is sent from sensor to health care center over heterogeneous multi-hop wireless channel is analyzed. Data of medical related diseases is sent through three different paths. In all three paths, data from sensors first reaches ZigBee, which is the common link in all three paths. Wireless Local Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunication System (UMTS) are connected with ZigBee. Each network (WLAN, WiMAX, UMTS) is setup according to environmental conditions, suitability of device and availability of structure for that device. Data from these networks is sent to IP-Cloud, which is further connected to health care center. Delay of data reaching each device is calculated and represented graphically. Main aim of this paper is to calculate delay of each link in each path over multi-hop wireless channel.Comment: arXiv admin note: substantial text overlap with arXiv:1208.240

    On Modeling Geometric Joint Sink Mobility with Delay-Tolerant Cluster-less Wireless Sensor Networks

    Full text link
    Moving Sink (MS) in Wireless Sensor Networks (WSNs) has appeared as a blessing because it collects data directly from the nodes where the concept of relay nodes is becomes obsolete. There are, however, a few challenges to be taken care of, like data delay tolerance and trajectory of MS which is NP-hard. In our proposed scheme, we divide the square field in small squares. Middle point of the partitioned area is the sojourn location of the sink, and nodes around MS are in its transmission range, which send directly the sensed data in a delay-tolerant fashion. Two sinks are moving simultaneously; one inside and having four sojourn locations and other in outer trajectory having twelve sojourn locations. Introduction of the joint mobility enhances network life and ultimately throughput. As the MS comes under the NP-hard problem, we convert it into a geometric problem and define it as, Geometric Sink Movement (GSM). A set of linear programming equations has also been given in support of GSM which prolongs network life time

    Transmission Delay of Multi-hop Heterogeneous Networks for Medical Applications

    Full text link
    Nowadays, with increase in ageing population, Health care market keeps growing. There is a need for monitoring of Health issues. Body Area Network consists of wireless sensors attached on or inside human body for monitoring vital Health related problems e.g, Electro Cardiogram (ECG), ElectroEncephalogram (EEG), ElectronyStagmography(ENG) etc. Data is recorded by sensors and is sent towards Health care center. Due to life threatening situations, timely sending of data is essential. For data to reach Health care center, there must be a proper way of sending data through reliable connection and with minimum delay. In this paper transmission delay of different paths, through which data is sent from sensor to Health care center over heterogeneous multi-hop wireless channel is analyzed. Data of medical related diseases is sent through three different paths. In all three paths, data from sensors first reaches ZigBee, which is the common link in all three paths. After ZigBee there are three available networks, through which data is sent. Wireless Local Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunication System (UMTS) are connected with ZigBee. Each network (WLAN, WiMAX, UMTS) is setup according to environmental conditions, suitability of device and availability of structure for that device. Data from these networks is sent to IP-Cloud, which is further connected to Health care center. Main aim of this paper is to calculate delay of each link in each path over multihop wireless channel.Comment: BioSPAN with 7th IEEE International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA 2012), Victoria, Canada, 201

    Social Profile Of The Aged In An Urban Population

    Get PDF
    Research Problem: What is the socio-demographic profile of urban aged population in Aligarh city. Objectives: i) To describe the socio-demographic profile of the aged population in an urban area, ii) To describe the attitude of these people. Design:Cross-sectional study. Setting : Urban areas of Aligarh city. Participants : 3951 persons aged 60 years and above Study Variables: Socio-demographic characteristics, attitudes. Statistical Analysis : By proportions. Result: 15% of the total  stimated elderly population covering all 10 sectors of Aligarh city was studied. The majority ofthe elderly (72.4%) belonged to 60-70 years age group. Most of them (77.2%) were illiterate, 61.6% belonged to lower socio-economic classes (IV & V), 78.1 % lived in joint families. 39.6% of the aged felt that they were not being given due respect by family members. Nearly half of them had an indifferent or unhappy attitude towards life. Conclusion: The socio-demographic characteristics of the aged are important and must be kept in mind for developing programs to assist them in living as respectful senior citizens

    On Energy Efficiency and Delay Minimization in Reactive Protocols in Wireless Multi-hop Networks

    Full text link
    In Wireless Multi-hop Networks (WMhNs), routing protocols with energy efficient and delay reduction techniques are needed to fulfill users demands. In this paper, we present Linear Programming models (LP_models) to assess and enhance reactive routing protocols. To practically examine constraints of respective LP_models over reactive protocols, we select AODV, DSR and DYMO. It is deduced from analytical simulations of LP_models in MATLAB that quick route repair reduces routing latency and optimizations of retransmission attempts results efficient energy utilization. To provide quick repair, we enhance AODV and DSR. To practically examine the efficiency of enhanced protocols in different scenarios of WMhNs, we conduct simulations using NS- 2. From simulation results, enhanced DSR and AODV achieve efficient output by optimizing routing latencies and routing load in terms of retransmission attempts

    Wireless Health Monitoring using Passive WiFi Sensing

    Full text link
    This paper presents a two-dimensional phase extraction system using passive WiFi sensing to monitor three basic elderly care activities including breathing rate, essential tremor and falls. Specifically, a WiFi signal is acquired through two channels where the first channel is the reference one, whereas the other signal is acquired by a passive receiver after reflection from the human target. Using signal processing of cross-ambiguity function, various features in the signal are extracted. The entire implementations are performed using software defined radios having directional antennas. We report the accuracy of our system in different conditions and environments and show that breathing rate can be measured with an accuracy of 87% when there are no obstacles. We also show a 98% accuracy in detecting falls and 93% accuracy in classifying tremor. The results indicate that passive WiFi systems show great promise in replacing typical invasive health devices as standard tools for health care.Comment: 6 pages, 8 figures, conference pape
    corecore