3 research outputs found

    GnRH Stimulates Peptidylarginine Deiminase Catalyzed Histone Citrullination in Gonadotrope Cells

    No full text
    Peptidylarginine deiminase (PAD) enzymes convert histone tail arginine residues to citrulline resulting in chromatin decondensation. Our previous work found that PAD isoforms are expressed in female reproductive tissues in an estrous cycle-dependent fashion, but their role in the anterior pituitary gland is unknown. Thus, we investigated PAD expression and function in gonadotrope cells. The gonadotrope-derived LbetaT2 cell line strongly expresses PAD2 at the protein level compared with other PAD isoforms. Consistent with this, PAD2 protein expression is highest during the estrous phase of the estrous cycle and colocalizes with the LH beta-subunit in the mouse pituitary. Using the GnRH agonist buserelin (GnRHa), studies in LbetaT2 and mouse primary gonadotrope cells revealed that 30 minutes of stimulation caused distinct puncta of PAD2 to localize in the nucleus. Once in the nucleus, GnRHa stimulated PAD2 citrullinates histone H3 tail arginine residues at sites 2, 8, and 17 within 30 minutes; however, this effect and PAD2 nuclear localization was blunted by incubation of the cells with the pan-PAD inhibitor, biphenyl-benzimidazole-Cl-amidine. Given that PAD2 citrullinates histones in gonadotropes, we next analyzed the functional consequence of PAD2 inhibition on gene expression. Our results show that GnRHa stimulates an increase in LHbeta and FSHbeta mRNA and that this response is significantly reduced in the presence of the PAD inhibitor biphenyl-benzimidazole-Cl-amidine. Overall, our data suggest that GnRHa stimulates PAD2-catalyzed histone citrullination in gonadotropes to epigenetically regulate gonadotropin gene expression

    Increased Systemic Antioxidant Power Ameliorates the Aging-Related Reduction in Oocyte Competence in Mice

    No full text
    Ovarian aging is associated with elevated oxidative stress and diminished oocyte developmental competence. We aimed to determine the impact of systemic antioxidant treatment in aged mice. Female outbred CF-1 mice were aged for 9 months prior to an 8-week 45 mg Euterpe oleracea (açaí) daily supplement. The açaí treatment induced a threefold increase in serum antioxidant power (FRAP) compared to both young and aged mice (p < 0.0001). Compared to young mice, aged mice had fewer oocytes and reduced blastocyst development (p < 0.0001); açaí did not affect the oocyte numbers, but improved blastocyst formation (p < 0.05). Additionally, açaí alleviated the aging-related decrease in implantation potential (p < 0.01). The aged mice showed evidence of elevated ovarian ER stress (increased whole-ovary PDIA4 expression, granulosa cell and oocyte GRP78 expression, and oocyte PDIA4 protein), reduced oocyte mitochondrial quality (higher PRKN activation and mitochondrial DNA oxidative damage), and dysregulated uterine glandular epithelium. Antioxidant intervention was sufficient to lessen these effects of ovarian aging, likely in part by the upregulation of NRF2. We conclude that açaí treatment is a promising strategy to improve ER and mitochondrial function in the ovaries, thereby ameliorating the decreased oocyte competence that occurs with ovarian aging
    corecore