27,706 research outputs found
Analyzing Delay in Wireless Multi-hop Heterogeneous Body Area Networks
With increase in ageing population, health care market keeps growing. There
is a need for monitoring of health issues. Wireless Body Area Network (WBAN)
consists of wireless sensors attached on or inside human body for monitoring
vital health related problems e.g, Electro Cardiogram (ECG), Electro
Encephalogram (EEG), ElectronyStagmography (ENG) etc. Due to life threatening
situations, timely sending of data is essential. For data to reach health care
center, there must be a proper way of sending data through reliable connection
and with minimum delay. In this paper transmission delay of different paths,
through which data is sent from sensor to health care center over heterogeneous
multi-hop wireless channel is analyzed. Data of medical related diseases is
sent through three different paths. In all three paths, data from sensors first
reaches ZigBee, which is the common link in all three paths. Wireless Local
Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX),
Universal Mobile Telecommunication System (UMTS) are connected with ZigBee.
Each network (WLAN, WiMAX, UMTS) is setup according to environmental
conditions, suitability of device and availability of structure for that
device. Data from these networks is sent to IP-Cloud, which is further
connected to health care center. Delay of data reaching each device is
calculated and represented graphically. Main aim of this paper is to calculate
delay of each link in each path over multi-hop wireless channel.Comment: arXiv admin note: substantial text overlap with arXiv:1208.240
Transmission Delay of Multi-hop Heterogeneous Networks for Medical Applications
Nowadays, with increase in ageing population, Health care market keeps
growing. There is a need for monitoring of Health issues. Body Area Network
consists of wireless sensors attached on or inside human body for monitoring
vital Health related problems e.g, Electro Cardiogram (ECG),
ElectroEncephalogram (EEG), ElectronyStagmography(ENG) etc. Data is recorded by
sensors and is sent towards Health care center. Due to life threatening
situations, timely sending of data is essential. For data to reach Health care
center, there must be a proper way of sending data through reliable connection
and with minimum delay. In this paper transmission delay of different paths,
through which data is sent from sensor to Health care center over heterogeneous
multi-hop wireless channel is analyzed. Data of medical related diseases is
sent through three different paths. In all three paths, data from sensors first
reaches ZigBee, which is the common link in all three paths. After ZigBee there
are three available networks, through which data is sent. Wireless Local Area
Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX),
Universal Mobile Telecommunication System (UMTS) are connected with ZigBee.
Each network (WLAN, WiMAX, UMTS) is setup according to environmental
conditions, suitability of device and availability of structure for that
device. Data from these networks is sent to IP-Cloud, which is further
connected to Health care center. Main aim of this paper is to calculate delay
of each link in each path over multihop wireless channel.Comment: BioSPAN with 7th IEEE International Conference on Broadband and
Wireless Computing, Communication and Applications (BWCCA 2012), Victoria,
Canada, 201
On Modeling Geometric Joint Sink Mobility with Delay-Tolerant Cluster-less Wireless Sensor Networks
Moving Sink (MS) in Wireless Sensor Networks (WSNs) has appeared as a
blessing because it collects data directly from the nodes where the concept of
relay nodes is becomes obsolete. There are, however, a few challenges to be
taken care of, like data delay tolerance and trajectory of MS which is NP-hard.
In our proposed scheme, we divide the square field in small squares. Middle
point of the partitioned area is the sojourn location of the sink, and nodes
around MS are in its transmission range, which send directly the sensed data in
a delay-tolerant fashion. Two sinks are moving simultaneously; one inside and
having four sojourn locations and other in outer trajectory having twelve
sojourn locations. Introduction of the joint mobility enhances network life and
ultimately throughput. As the MS comes under the NP-hard problem, we convert it
into a geometric problem and define it as, Geometric Sink Movement (GSM). A set
of linear programming equations has also been given in support of GSM which
prolongs network life time
Wireless Health Monitoring using Passive WiFi Sensing
This paper presents a two-dimensional phase extraction system using passive
WiFi sensing to monitor three basic elderly care activities including breathing
rate, essential tremor and falls. Specifically, a WiFi signal is acquired
through two channels where the first channel is the reference one, whereas the
other signal is acquired by a passive receiver after reflection from the human
target. Using signal processing of cross-ambiguity function, various features
in the signal are extracted. The entire implementations are performed using
software defined radios having directional antennas. We report the accuracy of
our system in different conditions and environments and show that breathing
rate can be measured with an accuracy of 87% when there are no obstacles. We
also show a 98% accuracy in detecting falls and 93% accuracy in classifying
tremor. The results indicate that passive WiFi systems show great promise in
replacing typical invasive health devices as standard tools for health care.Comment: 6 pages, 8 figures, conference pape
- …