18,009 research outputs found

    On using Multiple Quality Link Metrics with Destination Sequenced Distance Vector Protocol for Wireless Multi-Hop Networks

    Full text link
    In this paper, we compare and analyze performance of five quality link metrics forWireless Multi-hop Networks (WMhNs). The metrics are based on loss probability measurements; ETX, ETT, InvETX, ML and MD, in a distance vector routing protocol; DSDV. Among these selected metrics, we have implemented ML, MD, InvETX and ETT in DSDV which are previously implemented with different protocols; ML, MD, InvETX are implemented with OLSR, while ETT is implemented in MR-LQSR. For our comparison, we have selected Throughput, Normalized Routing Load (NRL) and End-to-End Delay (E2ED) as performance parameters. Finally, we deduce that InvETX due to low computational burden and link asymmetry measurement outperforms among all metrics

    HEER: Hybrid Energy Efficient Reactive Protocol for Wireless Sensor Networks

    Full text link
    Wireless Sensor Networks (WSNs) consist of numerous sensors which send sensed data to base station. Energy conservation is an important issue for sensor nodes as they have limited power.Many routing protocols have been proposed earlier for energy efficiency of both homogeneous and heterogeneous environments. We can prolong our stability and network lifetime by reducing our energy consumption. In this research paper, we propose a protocol designed for the characteristics of a reactive homogeneous WSNs, HEER (Hybrid Energy Efficient Reactive) protocol. In HEER, Cluster Head(CH) selection is based on the ratio of residual energy of node and average energy of network. Moreover, to conserve more energy, we introduce Hard Threshold (HT) and Soft Threshold (ST). Finally, simulations show that our protocol has not only prolonged the network lifetime but also significantly increased stability period.Comment: 2nd IEEE Saudi International Electronics, Communications and Photonics Conference (SIECPC 13), 2013, Riyadh, Saudi Arabi

    Density Controlled Divide-and-Rule Scheme for Energy Efficient Routing in Wireless Sensor Networks

    Full text link
    Cluster based routing technique is most popular routing technique in Wireless Sensor Networks (WSNs). Due to varying need of WSN applications efficient energy utilization in routing protocols is still a potential area of research. In this research work we introduced a new energy efficient cluster based routing technique. In this technique we tried to overcome the problem of coverage hole and energy hole. In our technique we controlled these problems by introducing density controlled uniform distribution of nodes and fixing optimum number of Cluster Heads (CHs) in each round. Finally we verified our technique by experimental results of MATLAB simulations.Comment: 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE2013), Regina, Saskatchewan, Canada, 201
    • …
    corecore