25 research outputs found

    Clinical practice guidelines on the management of variceal bleeding

    Get PDF
    Gastroesophageal variceal bleeding occurs in 30 - 50% of patients of liver cirrhosis with portal hypertension, with 20-70% mortality in one year. Therefore, it is essential to screen these patients for varices and prevent first episode of bleeding by treating them with β-blockers or endoscopic variceal band ligation. Ideally, the patients with variceal bleeding should be treated in a unit where the personnel are familiar with the management of such patients and where routine therapeutic interventions can be undertaken. Proper management of such patients include: initial assessment, resuscitation, blood volume replacement, vasoactive agents, prevention of associated complications such as bacterial infections, hepatic encephalopathy, coagulopathy and thrombocytopenia, and specific therapy. Rebleeding occurs in about 60% patients within 2 years of their recovery from first variceal bleeding episode, with 33% mortality. Therefore, it is mandatory that all such patients must be started on combination of β-blockers and band ligation to prevent recurrence of bleeding. Patients who required shunt surgery/TIPSS to control the acute episode do not require further preventive measures. These clinical practice guidelines (CPGs) have been jointly developed by Pakistan Society of Hepatology (PSH) and Pakistan Society of Study of Liver Diseases (PSSLD)

    Infected pancreatic necrosis: outcomes and clinical predictors of mortality. A post hoc analysis of the MANCTRA-1 international study

    Get PDF
    : The identification of high-risk patients in the early stages of infected pancreatic necrosis (IPN) is critical, because it could help the clinicians to adopt more effective management strategies. We conducted a post hoc analysis of the MANCTRA-1 international study to assess the association between clinical risk factors and mortality among adult patients with IPN. Univariable and multivariable logistic regression models were used to identify prognostic factors of mortality. We identified 247 consecutive patients with IPN hospitalised between January 2019 and December 2020. History of uncontrolled arterial hypertension (p = 0.032; 95% CI 1.135-15.882; aOR 4.245), qSOFA (p = 0.005; 95% CI 1.359-5.879; aOR 2.828), renal failure (p = 0.022; 95% CI 1.138-5.442; aOR 2.489), and haemodynamic failure (p = 0.018; 95% CI 1.184-5.978; aOR 2.661), were identified as independent predictors of mortality in IPN patients. Cholangitis (p = 0.003; 95% CI 1.598-9.930; aOR 3.983), abdominal compartment syndrome (p = 0.032; 95% CI 1.090-6.967; aOR 2.735), and gastrointestinal/intra-abdominal bleeding (p = 0.009; 95% CI 1.286-5.712; aOR 2.710) were independently associated with the risk of mortality. Upfront open surgical necrosectomy was strongly associated with the risk of mortality (p < 0.001; 95% CI 1.912-7.442; aOR 3.772), whereas endoscopic drainage of pancreatic necrosis (p = 0.018; 95% CI 0.138-0.834; aOR 0.339) and enteral nutrition (p = 0.003; 95% CI 0.143-0.716; aOR 0.320) were found as protective factors. Organ failure, acute cholangitis, and upfront open surgical necrosectomy were the most significant predictors of mortality. Our study confirmed that, even in a subgroup of particularly ill patients such as those with IPN, upfront open surgery should be avoided as much as possible. Study protocol registered in ClinicalTrials.Gov (I.D. Number NCT04747990)

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    16 Y/O Female with “Watermelon Stomach”?

    Get PDF
    Background. Gastric antral vascular ectasia (GAVE) also known as “watermelon stomach” (WS) is an uncommon cause of gastrointestinal (GI) blood loss. It typically presents in middle aged females. We are presenting a case of GAVE at an unusually early age with atypical symptoms. Case. A previously healthy 16 y/o Caucasian female presented to the ER with a one-month history of upper abdominal pain. Physical examination was benign except tenderness in the epigastric region. There were no significant findings on laboratory data. Upper endoscopy showed incidental findings of linear striae in the antrum indicative of GAVE but histology was equivocal. Discussion. GAVE is a poorly understood but treatable entity and an increasingly identifiable cause of chronic iron deficiency anemia or acute or occult upper GI bleeding. The pathophysiology of GAVE remains unclear. It is an endoscopic finding characterized by longitudinal columns of tortuous red ectatic vessels (watermelon stripes), pathognomonic for WS. Treatment options include endoscopic, pharmacologic, and surgical approaches. Failure to recognize GAVE can result in delayed treatment for years. Our patient with GAVE was unusually young and was diagnosed incidentally. Due to lack of anemia on laboratory examination we elected to monitor her clinically for any future development of anemia

    A multiview semantic vegetation index for robust estimation of urban vegetation cover

    No full text
    Urban vegetation growth is vital for developing sustainable and liveable cities in the contemporary era since it directly helps people’s health and well-being. Estimating vegetation cover and biomass is commonly done by calculating various vegetation indices for automated urban vegetation management and monitoring. However, most of these indices fail to capture robust estimation of vegetation cover due to their inherent focus on colour attributes with limited viewpoint and ignore seasonal changes. To solve this limitation, this article proposed a novel vegetation index called the Multiview Semantic Vegetation Index (MSVI), which is robust to color, viewpoint, and seasonal variations. Moreover, it can be applied directly to RGB images. This Multiview Semantic Vegetation Index (MSVI) is based on deep semantic segmentation and multiview field coverage and can be integrated into any vegetation management platform. This index has been tested on Google Street View (GSV) imagery of Wyndham City Council, Melbourne, Australia. The experiments and training achieved an overall pixel accuracy of 89.4% and 92.4% for FCN and U-Net, respectively. Thus, the MSVI can be a helpful instrument for analysing urban forestry and vegetation biomass since it provides an accurate and reliable objective method for assessing the plant cover at street level

    A deep semantic vegetation health monitoring platform for citizen science imaging data

    No full text
    Automated monitoring of vegetation health in a landscape is often attributed to calculating values of various vegetation indexes over a period of time. However, such approaches suffer from an inaccurate estimation of vegetational change due to the over-reliance of index values on vegetation’s colour attributes and the availability of multi-spectral bands. One common observation is the sensitivity of colour attributes to seasonal variations and imaging devices, thus leading to false and inaccurate change detection and monitoring. In addition, these are very strong assumptions in a citizen science project. In this article, we build upon our previous work on developing a Semantic Vegetation Index (SVI) and expand it to introduce a semantic vegetation health monitoring platform to monitor vegetation health in a large landscape. However, unlike our previous work, we use RGB images of the Australian landscape for a quarterly series of images over six years (2015–2020). This Semantic Vegetation Index (SVI) is based on deep semantic segmentation to integrate it with a citizen science project (Fluker Post) for automated environmental monitoring. It has collected thousands of vegetation images shared by various visitors from around 168 different points located in Australian regions over six years. This paper first uses a deep learning-based semantic segmentation model to classify vegetation in repeated photographs. A semantic vegetation index is then calculated and plotted in a time series to reflect seasonal variations and environmental impacts. The results show variational trends of vegetation cover for each year, and the semantic segmentation model performed well in calculating vegetation cover based on semantic pixels (overall accuracy = 97.7%). This work has solved a number of problems related to changes in viewpoint, scale, zoom, and seasonal changes in order to normalise RGB image data collected from different image devices

    Accurate and efficient urban street tree inventory with deep learning on mobile phone imagery

    No full text
    Deforestation, a major contributor to climate change, poses detrimental consequences such as agricultural sector disruption, global warming, flash floods, and landslides. Conventional approaches to urban street tree inventory suffer from inaccuracies and necessitate specialised equipment. To overcome these challenges, this paper proposes an innovative method that leverages deep learning techniques and mobile phone imaging for urban street tree inventory. Our approach utilises a pair of images captured by smartphone cameras to accurately segment tree trunks and compute the diameter at breast height (DBH). Compared to traditional methods, our approach exhibits several advantages, including superior accuracy, reduced dependency on specialised equipment, and applicability in hard-to-reach areas. We evaluated our method on a comprehensive dataset of 400 trees and achieved a DBH estimation accuracy with an error rate of less than 2.5%. Our method holds significant potential for substantially improving forest management practices. By enhancing the accuracy and efficiency of tree inventory, our model empowers urban management to mitigate the adverse effects of deforestation and climate change

    Automated detection of animals in low-resolution airborne thermal imagery

    No full text
    Detecting animals to estimate abundance can be difficult, particularly when the habitat is dense or the target animals are fossorial. The recent surge in the use of thermal imagers in ecology and their use in animal detections can increase the accuracy of population estimates and improve the subsequent implementation of management programs. However, the use of thermal imagers results in many hours of captured flight videos which require manual review for confirmation of species detection and identification. Therefore, the perceived cost and efficiency trade-off often restricts the use of these systems. Additionally, for many off-the-shelf systems, the exported imagery can be quite low resolution (<9 Hz), increasing the difficulty of using automated detections algorithms to streamline the review process. This paper presents an animal species detection system that utilises the cost-effectiveness of these lower resolution thermal imagers while harnessing the power of transfer learning and an enhanced small object detection algorithm. We have proposed a distant object detection algorithm named Distant-YOLO (D-YOLO) that utilises YOLO (You Only Look Once) and improves its training and structure for the automated detection of target objects in thermal imagery. We trained our system on thermal imaging data of rabbits, their active warrens, feral pigs, and kangaroos collected by thermal imaging researchers in New South Wales and Western Australia. This work will enhance the visual analysis of animal species while performing well on low, medium and high-resolution thermal imagery
    corecore