52,565 research outputs found

    Pre-registration UK diagnostic radiography student ability and confidence in interpretation of chest X-rays

    Get PDF
    Introduction Chest X-rays are the most frequently requested X-ray imaging in English hospitals. This study aimed to assess final year UK radiography students' confidence and ability in image interpretation of chest X-rays. Methods Thirty-three diagnostic radiography students were invited to assess their confidence and ability in interpreting chest x-rays from a bank of n=10 cases using multiple choice answers. Data analysis included 2x2 contingency tables, Kappa for inter-rater reliability, a Likert scale of confidence for each case, and questions to assess individual interpretation skills and ways to increase the learning of the subject. Results Twenty-three students participated in the study. The pooled accuracy achieved was 61% (95% CI 38.4-77.7; k=0.22). The degree of confidence and ability varied depending upon the student and the conditions observed. High confidence was noted with COVID-19 (n=12/23; 52%), lung metastasis (n=14/23; 61%), and pneumothorax (n=13/23; 57%). Low confidence was noted with conditions of consolidation (n=8/23; 35%), haemothorax (n=8/23; 35%), and surgical emphysema (n=8/23; 35%). From the sample n=11 (48%), participants stated they felt they had the knowledge to interpret chest X-rays required for a newly qualified radiographer. Conclusion The results demonstrated final year radiography students' confidence and ability in image interpretation of chest X-rays. Student feedback indicated a preference for learning support through university lectures, online study resources, and time spent with reporting radiographers on clinical practice to improve ability and confidence in interpreting chest X-rays

    A review of the perturbation theory as applied to the determination of geopotential

    Get PDF
    Satellite theory to determine geopotential from orbital motion of artificial earth satellite

    Review on composite cation exchanger as interdicipilinary materials in analytical chemistry

    Get PDF
    Green chemistry and technology is the design of chemical manufacturing systems to minimize their adverse affects on the environment. Thus, a primary goal of green chemistry and technology is to reduce the environmental impact of chemical processes and chemical manufacturing while simultaneously enhancing the overall process performance. Although it is beneficial to simply reduce the use of organic solvents in chemical processes, green chemistry and technology goes further, in that it evaluates the entire thing to identify techniques that can be applied to minimize the overall process hazard, while maintaining economic practicality. Evaluation of the environmental impacts of the manufacturing process requires a systematic approach and appropriate metrics that permit quantitative assessment of environmental hazards. Thus, this review begins with a introduction of cation-exchange materials the drivers for green technology and the metrics through which processes can be started. Then, the cation-exchange materials have so many applications described in this review and their many derivative and we describes inorganic to nanocomposite cation exchange materials and their technological improvement from old era to latest age of nano because green chemistry can be applied to real processes. Two elements are specifically highlighted: (a) the use of new materials to facilitate active and selective chemistry and the use of said materials within removal of environment hazardous

    Relativistic Quantum Games in Noninertial Frames

    Full text link
    We study the influence of Unruh effect on quantum non-zero sum games. In particular, we investigate the quantum Prisoners' Dilemma both for entangled and unentangled initial states and show that the acceleration of the noninertial frames disturbs the symmetry of the game. It is shown that for maximally entangled initial state, the classical strategy C (cooperation) becomes the dominant strategy. Our investigation shows that any quantum strategy does no better for any player against the classical strategies. The miracle move of Eisert et al (1999 Phys. Rev. Lett. 83 3077) is no more a superior move. We show that the dilemma like situation is resolved in favor of one player or the other.Comment: 8 Pages, 2 figures, 2 table
    corecore