2 research outputs found

    Robust linear parameter varying induction motor control with polytopic models

    No full text
    This paper deals with a robust controller for an induction motor which is represented as a linear parameter varying systems. To do so linear matrix inequality (LMI) based approach and robust Lyapunov feedback controller are associated. This new approach is related to the fact that the synthesis of a linear parameter varying (LPV) feedback controller for the inner loop take into account rotor resistance and mechanical speed as varying parameter. An LPV flux observer is also synthesized to estimate rotor flux providing reference to cited above regulator. The induction motor is described as a polytopic model because of speed and rotor resistance affine dependence their values can be estimated on line during systems operations. The simulation results are presented to confirm the effectiveness of the proposed approach where robustness stability and high performances have been achieved over the entire operating range of the induction motor

    Linear parameter varying sensorless torque control for singularly perturbed induction motor with torque and flux observers

    No full text
    International audienceIn this paper, a new approach being different from the concept of DTC and IFOC for a robust torque control design for induction motor is addressed. The design is based on the framework of singularly perturbed system theory and linear varying parameter systems. In these systems, the rotor flux is considered to be a time-varying parameter in order to guarantee a robust torque control with LPV flux observer with respect to the speed and resistance variations. In fact, this observer is designed to estimate the rotor flux as well as an MRAS observer is introduced to estimate the mechanical speed and rotor resistance. The main feature of this proposed structure is the enhancement of robustness with flux, speed and rotor resistance variation. This improvement leads to a considerable decrease of the torque ripples and ensures the stability for the entire operating range. The obtained simulations and experimental results are used to validate the effectiveness of the proposed control strategy
    corecore