22 research outputs found

    Drug transport mechanisms from carbopol/eudragit verapamil sustained-release tablets

    Get PDF
    The objectives of this study were to compare dissolution profiles of a verapamil (VRP) formulation manufactured inhouse and Isoptin SR using USP Apparatus 2 and 3 and to elucidate drug release kinetics of these dosage forms. Eudragit NE 30D (ethyl acrylate–methyl methacrylate copolymer in a 2:1 ratio) aqueous dispersion was used as a granulating binder for the manufacture of VRP mini-matrix sustained-release tablets. The wet granulation process was performed to prepare free-flowing granules that were blended with Carbopol. The tablets were manufactured using a single-punch press by compression of the granules with magnesium stearate as a lubricant. Drug release was determined in phosphate buffer solution using USP Apparatus 2 and 3. Dissolution data were fitted to zero- and first-order models; in addition, the kinetic data were determined by evaluation of Higuchi release kinetics. The mechanism of drug release was established using the Korsmeyer–Peppas model. In general, all tablets showed high mechanical resistance with less than 1% friability. There was no significant difference between the dissolution profiles of the formulation manufactured in-house and the commercially available product. The release mechanism of the formulated and marketed products was controlled by anomalous non-Fickian diffusion. VRP release was prolonged for 12 h indicating the usefulness of the formulation as a twice-daily dosage form. The mechanism of drug release for the dosage forms was unaffected by the choice of apparatus

    Evaluation of rate of swelling and erosion of verapamil (VRP) sustained-release matrix tablets

    Get PDF
    Tablets manufactured in-house were compared to a marketed sustained-release product of verapamil to investigate the rate of hydration, erosion, and drug-release mechanism by measuring the wet and subsequent dry weights of the products. Swelling and erosion rates depended on the polymer and granulating fluid used, which ultimately pointed to their permeability characteristics. Erosion rate of the marketed product was highest, which suggests that the gel layer that formed around these tablets was weak as opposed to the robust and resistant layers of test products. Anomalous and near zero-order transport mechanisms were dominant in tests and commercial product, respectively

    The use of response surface methodology in the evaluation of captopril microparticles manufactured using an oil in oil solvent evaporation technique

    Get PDF
    Captopril (CPT) microparticles were manufactured by solvent evaporation using acetone (dispersion phase) and liquid paraffin (manufacturing phase) with Eudragit® and Methocel® as coat materials. Design of experiments and response surface methodology (RSM) approaches were used to optimize the process. The microparticles were characterized based on the percent of drug released and yield, microcapsule size, entrapment efficiency and Hausner ratio. Differential scanning calorimetry (DSC), Infrared (IR) spectroscopy, scanning electron microscopy (SEM) and in vitro dissolution studies were conducted. The microcapsules were spherical, free-flowing and IR and DSC thermograms revealed that CPT was stable. The percent drug released was investigated with respect to Eudragit® RS and Methocel® K100M, Methocel® K15M concentrations and homogenizing speed. The optimal conditions for microencapsulation were 1.12 g Eudragit® RS, 0.67 g Methocel® K100M and 0.39 g Methocel® K15M at a homogenizing speed of 1643 rpm and 89% CPT was released. The value of RSM-mediated microencapsulation of CPT was elucidated

    Survival of bifidobacteria and their usefulness in faecal source tracking

    Get PDF
    Bifidobacteria have long since been recommended as indicators of human and animal pollution. Concentration ratio (tracking ratio) of the sorbitol-utilising bifidobacteria (SUB) and the total bifidobacteria (TB) can be used to distinguish between animal and human sources of faecal water contamination. The cut-off value needs to be calibrated in a given geographical area. Seven sites with permanent faecal contamination were selected in South Africa. Concentrations of SUB ranged from 10-50000 cells/100 mL, while TB ranged from 0-8000 cells/100 mL. The tracking ratio ranged from 0.10 to 6.25, but no clear cut-off value could be established. The YN-17 agar was replaced for TB with the modified Beerens medium with pH = 5.70, to suppress the growth of faecal streptococci. Tracking ratios observed are most likely the results of different survival rates of SUB and TB. Bifidobacteria die-off due to nutrients was not found to be significant using design of experiment. Thus a lack of continuous input or oxygen levels in water may be major factors. This would limit the ratios used as a faecal source tracking method

    Swelling, erosion and drug release characteristics of salbutamol sulfate from hydroxypropyl methylcellulose-based matrix tablets

    Get PDF
    Background: Hydrophilic matrix formulations are important and simple technologies that are used to manufacture sustained release dosage forms. Method: Hydroxypropyl methylcellulose-based matrix tablets, with and without additives, were manufactured to investigate the rate of hydration, rate of erosion, and rate and mechanism of drug release. Scanning electron microscopy was used to assess changes in the microstructure of the tablets during drug release testing and whether these changes could be related to the rate of drug release from the formulations. Results: The results revealed that the rate of hydration and erosion was dependent on the polymer combination(s) used, which in turn affected the rate and mechanism of drug release from these formulations. It was also apparent that changes in the microstructure of matrix tablets could be related to the different rates of drug release that were observed from the test formulations. Conclusion: The use of scanning electron microscopy provides useful information to further understand drug release mechanisms from matrix tablets

    Formulation optimization of smart thermosetting lamotrigine loaded hydrogels using response surface methodology, box benhken design and artificial neural networks

    Get PDF
    The aim of this research was to develop lamotrigine containing thermosetting hydrogel for intranasal administration to manage and treat generalized epilepsy. Thermosetting hydrogels were prepared using different ratios of poloxamer 407 (L127), poloxamer 188 (L68) and CarbopolVR 974 P NF (C974) using the cold production process. The in situ thermosetting hydrogel was optimized using Box Behken design. Co-solvency approach was used to increase the solubility of lamotrigine by dissolving it in propylene glycol and polyethylene glycol 400 (0.2: 0.8) and the resultant solution was incorporated in the hydrogel to manufacture an LTG hydrogel. The presence of a higher amount of L127 resulted in higher viscosity at 22 0C and 34 0C and decreased the overall release of LTG. An increase in the amount of C974 resulted in a decrease in the pH of the hydrogel. The results show that formulations F10, F12, F13, F14, F15, F16 and F17 exhibited acceptable thermosetting behavior, pH and released adequate Lamotrigine above the minimum effective concentration to treat generalized epilepsy. The optimized formulation exhibited acceptable thermosetting behavior, pH and lamotrigine release but formed a stiff gel at 22 0C. The average LTG content of the optimized hydrogel was 5.00 ± 0.0225mg/ml with % recovery of 99.17%. The amount of LTG released at 12 h from the optimized hydrogel was 3.21 ± 0.0155mg and will be therapeutically effective in the brain after absorption via the olfactory region in the nasal cavity

    Design, Optimization, Manufacture and Characterization of Efavirenz-Loaded Flaxseed Oil Nanoemulsions

    Get PDF
    The formation, manufacture and characterization of low energy water-in-oil (w/o) nanoemulsions prepared using cold pressed flaxseed oil containing efavirenz was investigated. Pseudo-ternary phase diagrams were constructed to identify the nanoemulsion region(s). Other potential lipid-based drug delivery phases containing flaxseed oil with 1:1 m/m surfactant mixture of Tween® 80, Span® 20 and different amounts of ethanol were tested to characterize the impact of surfactant mixture on emulsion formation. Flaxseed oil was used as the oil phase as efavirenz exhibited high solubility in the vehicle when compared to other vegetable oils tested. Optimization of surfactant mixtures was undertaken using design of experiments, specifically a D-optimal design with the flaxseed oil content set at 10% m/m. Two solutions from the desired optimization function were produced based on desirability and five nanoemulsion formulations were produced and characterized in terms of in vitro release of efavirenz, physical and chemical stability. Metastable nanoemulsions containing 10% m/m flaxseed oil were successfully manufactured and significant isotropic gel (semisolid) and o/w emulsions were observed during phase behavior studies. Droplet sizes ranged between 156 and 225 nm, zeta potential between −24 and −41 mV and all formulations were found to be monodisperse with polydispersity indices ≤ 0.487

    The use of quantitative analysis and Hansen solubility parameter predictions for the selection of excipients for lipid nanocarriers to be loaded with water soluble and insoluble compounds

    Get PDF
    The aim of these studies was to determine the miscibility of different API with lipid excipients to predict drug loading and encapsulation properties for the production of solid lipid nanoparticles and nanostructured lipid carriers. Five API exhibiting different physicochemical characteristics, viz., clarithromycin, efavirenz, minocycline hydrochloride, mometasone furoate, and didanosine were used and six solid lipids in addition to four liquid lipids were investigated. Determination of solid and liquid lipids with the best solubilization potential for each API were performed using a traditional shake-flask method and/or a modification thereof. Hansen solubility parameters of the API and different solid and liquid lipids were estimated from their chemical structure using Hiroshi Yamamoto’s molecular breaking method of Hansen Solubility Parameters in Practice software. Experimental results were in close agreement with solubility parameter predictions for systems with ΔδT larger than 4.0 MPa1/2. A combination of Hansen solubility parameters with experimental drug-lipid miscibility tests can be successfully applied to predict lipids with the best solubilizing potential for different API prior to manufacture of solid lipid nanoparticles and nanostructured lipid carriers

    Formulation and Characterisation of a Combination Captopril and Hydrochlorothiazide Microparticulate Dosage Form

    Get PDF
    Cardiovascular diseases such as hypertension and cardiac failure in South African children and adolescents are effectively managed long term, using a combination treatment of captopril and hydrochlorothiazide. The majority of commercially available pharmaceutical products are designed for adult patients and require extemporaneous manipulation, prior to administration to paediatric patients. There is a need to develop an age appropriate microparticulate dosing technology that is easy to swallow, dose and alter doses whilst overcoming the pharmacokinetic challenges of short half-life and biphasic pharmacokinetic disposition exhibited by hydrochlorothiazide and captopril. An emulsion solvent evaporation approach using different combinations of polymers was used to manufacture captopril and hydrochlorothiazide microparticles. Design of experiments was used to develop and analyse experimental data, and identifyoptimum formulation and process conditions for the preparation of the microparticles. Characterisation studies to establish encapsulation efficiency, in vitro release, shape, size and morphology of the microparticles were undertaken. The microparticles produced were in the micrometre size range, with an encapsulation efficiency >75% for both hydrochlorothiazide and captopril. The microparticulate technology is able to offer potential resolution to the half-life mediated dosing frequency of captopril as sustained release of the molecule was observed over a 12-h period. The release of hydrochlorothiazide of >80% suggests an improvement in solubility limited dissolution

    Stability indicating HPLC-ECD method for the analysis of clarithromycin in pharmaceutical dosage forms: Method scaling versus re-validation.

    Get PDF
    An isocratic high-performance liquid chromatographic method using electrochemical detection (HPLC-ECD) for the quantitation of clarithromycin (CLA) was developed using Response Surface Methodology (RSM) based on a Central Composite Design (CCD). The method was validated using International Conference on Harmonization (ICH) guidelines with an analytical run time of 20 min. Method re-validation following a change in analytical column was successful in reducing the analytical run time to 13 min, decreasing solvent consumption thus facilitating environmental and financial sustainability. The applicability of using the United States Pharmacopeia (USP) method scaling approach in place of method re-validation using a column with a different L–designation to the original analytical column, was investigated. The scaled method met all USP system suitability requirements for resolution, tailing factor and % relative standard deviation (RSD). The re-validated and scaled method was successfully used to resolve CLA from manufacturing excipients in commercially available dosage forms. Although USP method scaling is only permitted for columns within the same L-designation, these data suggest that it may also be applicable to columns of different designation
    corecore