11 research outputs found

    Intermolecular CH-Ï€ Electrons Interaction in Poly (9,9-dioctylfluorenyl-2,7-diyl) (PFO): An Experimental and Theoretical Study

    No full text
    This study demonstrates the presence of CH-π interaction in poly [9,9-dioctylfluorenyl-2,7-diyl] (PFO-1) due to an aggregate formation of PFO-1 in the liquid state. The absorption spectra of PFO-1 in certain solvents at low concentrations showed a single band at 390 nm. However, when using high concentrations, a new band at 437 nm appeared. This band is due to the aggregate formation of PFO-1. The aggregate formation occurs as a result of the CH interaction of the n-alkyl side chains with π-electrons in the benzene ring. The optical characteristics of another conjugated polymer of poly [9,9-di-(2-ethylhexyl)-fluorenyl-2,7-diyl] (PFO-2) were investigated to confirm the CH-π interaction. The absorption showed only one wavelength at 390 nm without any new band at the end of the spectrum, even at higher concentrations and lower temperatures. The main reason for the absence of aggregate formation in PFO-2 is the sterical hindrance caused by the branched alkyl side chains. In addition, Density Functional Theory (DFT) was used to compute the HOMO–LUMO transitions, electron charge distribution, and frontier molecular orbitals for each polymer. The Mulliken charge distribution and demonstrated a notable difference in the reactivity of the alkyl side chain, confirming the higher ability of PFO-1 to form CH-π bonds. docking model emphasized that the band at 437 nm could be attributed to the interaction between CH in the n-alkyl side chain and π bonds in the aromatic rings of PFO-1

    Nanoclay-Reinforced Nanocomposite Nanofibers—Fundamentals and State-of-the-Art Developments

    No full text
    Nanoclays are layered mineral silicates, i.e., layered silicate nanosheets. Nanoclays such as montmorillonite, bentonite, kaolinite, etc., have been used as reinforcements in the nanofibers. Numerous polymers have been used to fabricate the nanofibers, including poly(vinylidene fluoride), poly(vinyl alcohol), polycaprolactone, nylon, polyurethane, poly(ethylene oxide), and others. To develop better compatibility with polymers, nanoclays have been organo-modified prior to reinforcement in the nanofiber matrices. This state-of-the-art review highlights the fundamentals, design, fabrication, and characteristics of the polymer/nanoclay nanofibers. The nanoclay filled nanocomposite nanofibers have been fabricated using electrospinning and other fiber processing techniques. The electrospinning technique has been preferred to form the nanoclay-filled nanofibers, owing to the better control of processing parameters and resulting nanofiber properties. The electrospun polymer/nanoclay nanofibers usually have fine nanoparticle dispersions, microstructures, smooth textures, and narrow diameters. The physical properties of the designed nanofibers depend upon the processing technology used, solvent, solution/melt concentration, flow rate, spinning speed, voltage, and other process parameters. Hence, this review attempts to assess a literature-driven consequence of embedding nanoclays in the polymeric nanofibers in a broad context of the application of these fibrous materials. Conclusively, to design the polymer/nanoclay nanofibers, montmorillonite nanoclay has been observed as a nanofiller in most of the studies, and, similarly, the electrospinning technique was preferred as a fabrication technique. Almost all the physical properties of the nanofibers studied revealed dependences upon the choice of the polymer matrix for nanofiber formation as well as the nanoclay contents, modification, and dispersion state. Accordingly, the nylon/nanoclay nanofibers have been investigated for nanofiller dispersion, mechanical properties, and thermal profiles. The antibacterial properties were among the prominent features of the poly(vinyl alcohol)/nanoclay nanofibers. The poly(vinylidene fluoride)/nanoclay systems were explored for the microstructure, crystallinity, and piezoelectric properties. The polycaprolactone/nanoclay nanofibers having fine microstructure were capable of forming tissue engineering scaffolds. The drug delivery and sound absorption properties were noticeable for the polyurethane/nanoclay nanofiber systems. Moreover, the poly(lactic acid)/nanoclay nanofibers were found to have prominent biodegradability and low gas permeability features. The resulting polymer/nanoclay nanocomposite nanofiber systems found potential for the technical applications of sensors, packaging, tissue engineering, and wound healing. However, thorough research efforts have been found to be desirable to find the worth of polymer/nanoclay nanofibers in several concealed technological sectors of energy, electronics, aerospace, automotives, and biomedical fields

    Nanocomposite Foams of Polyurethane with Carbon Nanoparticles—Design and Competence towards Shape Memory, Electromagnetic Interference (EMI) Shielding, and Biomedical Fields

    No full text
    Polyurethane is a multipurpose polymer with indispensable physical characteristics and technical uses, such as films/coatings, fibers, and foams. The inclusion of nanoparticles in the polyurethane matrix has further enhanced the properties and potential of this important polymer. Research in this field has led to the design and exploration of polyurethane foams and polyurethane nanocomposite foams. This review article reflects vital aspects related to the fabrication, features, and applications of polyurethane nanocomposite foams. High-performance nanocellular polyurethanes have been produced using carbon nanoparticles such as graphene and carbon nanotubes. Enhancing the amounts of nanofillers led to overall improved nanocomposite foam features and performances. Subsequently, polyurethane nanocomposite foams showed exceptional morphology, electrical conductivity, mechanical strength, thermal stability, and other physical properties. Consequently, multifunctional applications of polyurethane nanocomposite foams have been observed in shape memory, electromagnetic interference shielding, and biomedical applications

    Effect of Gamma Irradiation on the Optical Properties of the Conjugated Copolymer B-co-MP

    No full text
    The conjugated polymer poly {[2-[2′,5′-bis(2″-ethylhexyloxy)phenyl]-1,4-phenylenevinylene]-co-[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene]} (B-co-MP) has been proven to be an excellent laser medium with a high photochemical stability. Moreover, the impact of γ-irradiation on its optical and chemical properties has been investigated. Herein, the spectral and amplified spontaneous emission (ASE) characteristics of B-co-MP at various concentrations under γ-irradiation doses are studied. Various concentrations of B-co-MP in tetrahydrofuran (THF) were prepared. The samples were irradiated with various γ-doses from 5 to 20 kGy using a Co-60 source at room temperature. The absorption, fluorescence, and ASE spectra were dramatically blue-shifted after the γ-irradiation. This indicates that the increment in the γ-irradiation dose led to a widening in the energy gap and reduction in the number of carbon atoms (N). The change in the spectral profiles could be attributed to chain conformational alterations and/or chain scission induced by the γ-irradiation. We anticipate this study to boost our understanding of optical and structural profiles of B-co-MP under various conditions, including γ-irradiation and the potential utility of this copolymer in a variety of applications

    Effect of Gamma Irradiation on the Optical Properties of the Conjugated Copolymer B-co-MP

    No full text
    The conjugated polymer poly {[2-[2′,5′-bis(2″-ethylhexyloxy)phenyl]-1,4-phenylenevinylene]-co-[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene]} (B-co-MP) has been proven to be an excellent laser medium with a high photochemical stability. Moreover, the impact of γ-irradiation on its optical and chemical properties has been investigated. Herein, the spectral and amplified spontaneous emission (ASE) characteristics of B-co-MP at various concentrations under γ-irradiation doses are studied. Various concentrations of B-co-MP in tetrahydrofuran (THF) were prepared. The samples were irradiated with various γ-doses from 5 to 20 kGy using a Co-60 source at room temperature. The absorption, fluorescence, and ASE spectra were dramatically blue-shifted after the γ-irradiation. This indicates that the increment in the γ-irradiation dose led to a widening in the energy gap and reduction in the number of carbon atoms (N). The change in the spectral profiles could be attributed to chain conformational alterations and/or chain scission induced by the γ-irradiation. We anticipate this study to boost our understanding of optical and structural profiles of B-co-MP under various conditions, including γ-irradiation and the potential utility of this copolymer in a variety of applications

    Spontaneous Adsorption and Efficient Photodegradation of Indigo Carmine under Visible Light by Bismuth Oxyiodide Nanoparticles Fabricated Entirely at Room Temperature

    No full text
    Bismuth oxyiodide (BiOI) is a targeted material for its relative safety and photocatalytic activity under visible light. In this study, a successful simple and energy-saving route was applied to prepare BiOI through a sonochemical process at room temperature. The characterization of the prepared BiOI was conducted by physical means. The transmission electron microscope (TEM) image showed that the BiOI comprises nanoparticles of about 20 nm. Also, the surface area of the BiOI was found to be 34.03 m2 g−1 with an energy gap of 1.835 eV. The adsorption and photocatalytic capacities of the BiOI were examined for the indigo carmine dye (IC) as a model water-pollutant via the batch experiment methodology. The solution parameters were optimized, including pH, contact time, IC concentration, and temperature. Worth mentioning that an adsorption capacity of 185 mg·g−1 was obtained from 100 mg L−1 IC solution at 25 °C within 60 min as an equilibrium time. In addition, the BiOI showed a high degradation efficiency towards IC under tungsten lamb (80 W), where 93% was removed within 180 min, and the complete degradation was accomplished in 240 min. The fabricated BiOI nanoparticles completely mineralized the IC under artificial visible light, as indicated by the total organic carbon analysis

    Graphene Nanocomposites for Electromagnetic Interference Shielding—Trends and Advancements

    No full text
    Electromagnetic interference is considered a serious threat to electrical devices, the environment, and human beings. In this regard, various shielding materials have been developed and investigated. Graphene is a two-dimensional, one-atom-thick nanocarbon nanomaterial. It possesses several remarkable structural and physical features, including transparency, electron conductivity, heat stability, mechanical properties, etc. Consequently, it has been used as an effective reinforcement to enhance electrical conductivity, dielectric properties, permittivity, and electromagnetic interference shielding characteristics. This is an overview of the utilization and efficacy of state-of-the-art graphene-derived nanocomposites for radiation shielding. The polymeric matrices discussed here include conducting polymers, thermoplastic polymers, as well as thermosets, for which the physical and electromagnetic interference shielding characteristics depend upon polymer/graphene interactions and interface formation. Improved graphene dispersion has been observed due to electrostatic, van der Waals, π-π stacking, or covalent interactions in the matrix nanofiller. Accordingly, low percolation thresholds and excellent electrical conductivity have been achieved with nanocomposites, offering enhanced shielding performance. Graphene has been filled in matrices like polyaniline, polythiophene, poly(methyl methacrylate), polyethylene, epoxy, and other polymers for the formation of radiation shielding nanocomposites. This process has been shown to improve the electromagnetic radiation shielding effectiveness. The future of graphene-based nanocomposites in this field relies on the design and facile processing of novel nanocomposites, as well as overcoming the remaining challenges in this field

    Ionization Radiation Shielding Effectiveness of Lead Acetate, Lead Nitrate, and Bismuth Nitrate-Doped Zinc Oxide Nanorods Thin Films: A Comparative Evaluation

    No full text
    The fabrication of Nano-based shielding materials is an advancing research area in material sciences and nanotechnology. Although bulky lead-based products remain the primary choice for radiation protection, environmental disadvantages and high toxicity limit their potentials, necessitating less costly, compatible, eco-friendly, and light-weight alternatives. The theme of the presented investigation is to compare the ionization radiation shielding potentialities of the lead acetate (LA), lead nitrate (LN), and bismuth nitrate (BN)-doped zinc oxide nanorods-based thin films (ZONRs-TFs) produced via the chemical bath deposition (CBD) technique. The impact of the selected materials’ doping content on morphological and structural properties of ZONRs-TF was investigated. The X-ray diffractometer (XRD) analyses of both undoped and doped TFs revealed the existence of hexagonal quartzite crystal structures. The composition analysis by energy dispersive (EDX) detected the corrected elemental compositions of the deposited films. Field emission scanning electronic microscope (FESEM) images of the TFs showed highly porous and irregular surface morphologies of the randomly aligned NRs with cracks and voids. The undoped and 2 wt.% BN-doped TFs showed the smallest and largest grain size of 10.44 nm and 38.98 nm, respectively. The linear attenuation coefficient (µ) values of all the optimally doped ZONRs-TFs measured against the X-ray photon irradiation disclosed their excrement shielding potency. The measured µ values of the ZONRs-TFs displayed the trend of 1 wt.% LA-doped TF > 1 wt.% LN-doped TF > 3 wt.% BN-doped TF > undoped TFs). The values of μ of the ZONRs-TFs can be customized by adjusting the doping contents, which in turn controls the thickness and morphology of the TFs. In short, the proposed new types of the LA-, LN- and BN-doped ZONRs-TFs may contribute towards the development of the prospective ionization radiation shielding materials

    Investigating the Role of Temperature in Laser Assisted Chemical Bath Deposition for ZnO Growth for Photodetector Application

    No full text
    ZnO microrods (ZnO-MRs) have unique properties that make them highly attractive for applications such as optoelectronics, electronics, and sensors. This work demonstrates the successful synthesis of high-quality ZnO-MRs using a laser-assisted chemical bath deposition method. The optimal growth temperature for high-quality ZnO-MRs was found to be 61.10 °C, considerably lower than that required for conventional chemical methods. Various characterization techniques, including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy Dispersive X-ray (EDX), and UV-Vis spectrometry, confirmed the structural and optical properties of the synthesized ZnO-MRs. The UV detection potentialities of the fabricated ZnO-MRs were investigated. All samples exhibited good UV detection capabilities with the sample grown at 61.10 °C showing the best performance with fast response and recovery times of 1.260 s and 1.398 s, respectively. These findings hold immense potential for developing more efficient methods for synthesizing ZnO-MRs for use in various applications
    corecore