21 research outputs found

    Ink4a/Arf expression is a biomarker of aging

    Get PDF
    The Ink4a/Arf locus encodes 2 tumor suppressor molecules, p16INK4a and Arf, which are principal mediators of cellular senescence. To study the links between senescence and aging in vivo, we examined Ink4a/Arf expression in rodent models of aging. We show that expression of p16INK4a and Arf markedly increases in almost all rodent tissues with advancing age, while there is little or no change in the expression of other related cell cycle inhibitors. The increase in expression is restricted to well-defined compartments within each organ studied and occurs in both epithelial and stromal cells of diverse lineages. The age-associated increase in expression of p16INK4a and Arf is attenuated in the kidney, ovary, and heart by caloric restriction, and this decrease correlates with diminished expression of an in vivo marker of senescence, as well as decreased pathology of those organs. Last, the age-related increase in Ink4a/Arf expression can be independently attributed to the expression of Ets-1, a known p16INK4a transcriptional activator, as well as unknown Ink4a/Arf coregulatory molecules. These data suggest that expression of the Ink4a/Arf tumor suppressor locus is a robust biomarker, and possible effector, of mammalian aging

    Disruption of Growth Hormone Receptor Prevents Calorie Restriction from Improving Insulin Action and Longevity

    Get PDF
    Most mutations that delay aging and prolong lifespan in the mouse are related to somatotropic and/or insulin signaling. Calorie restriction (CR) is the only intervention that reliably increases mouse longevity. There is considerable phenotypic overlap between long-lived mutant mice and normal mice on chronic CR. Therefore, we investigated the interactive effects of CR and targeted disruption or knock out of the growth hormone receptor (GHRKO) in mice on longevity and the insulin signaling cascade. Every other day feeding corresponds to a mild (i.e. 15%) CR which increased median lifespan in normal mice but not in GHRKO mice corroborating our previous findings on the effects of moderate (30%) CR on the longevity of these animals. To determine why insulin sensitivity improves in normal but not GHRKO mice in response to 30% CR, we conducted insulin stimulation experiments after one year of CR. In normal mice, CR increased the insulin stimulated activation of the insulin signaling cascade (IR/IRS/PI3K/AKT) in liver and muscle. Livers of GHRKO mice responded to insulin by increased activation of the early steps of insulin signaling, which was dissipated by altered PI3K subunit abundance which putatively inhibited AKT activation. In the muscle of GHRKO mice, there was elevated downstream activation of the insulin signaling cascade (IRS/PI3K/AKT) in the absence of elevated IR activation. Further, we found a major reduction of inhibitory Ser phosphorylation of IRS-1 seen exclusively in GHRKO muscle which may underpin their elevated insulin sensitivity. Chronic CR failed to further modify the alterations in insulin signaling in GHRKO mice as compared to normal mice, likely explaining or contributing to the absence of CR effects on insulin sensitivity and longevity in these long-lived mice

    Growth Hormone Abolishes Beneficial Effects Of Calorie Restriction In Long-Lived Ames Dwarf Mice

    No full text
    Disruption of the growth hormone (GH) axis promotes longevity and delays aging. In contrast, GH over-expression may lead to accelerated aging and shorter life. Calorie restriction (CR) improves insulin sensitivity and may extend lifespan. Long-lived Ames dwarf (df/df) mice have additional extension of longevity when subjected to 30% CR. The aim of the study was to assess effects of CR or GH replacement therapy separately and as a combined (CR. +. GH) treatment in GH-deficient df/df and normal mice, on selected metabolic parameters (e.g., insulin, glucose, cholesterol), insulin signaling components (e.g., insulin receptor [IR] β-subunit, phosphorylated form of IR [IR pY1158], protein kinase C ζ/λ [p-PKCζ/λ] and mTOR [p-mTOR]), transcription factor p-CREB, and components of the mitogen-activated protein kinase (MAPK) signaling (p-ERK1/2, p-p38), responsible for cell proliferation, differentiation and survival. CR decreased plasma levels of insulin, glucose, cholesterol and leptin, and increased hepatic IR β-subunit and IR pY1158 levels as well as IR, IRS-1 and GLUT-2 gene expression compared to ad libitum feeding, showing a significant beneficial diet intervention effect. Moreover, hepatic protein levels of p-PKCζ/λ, p-mTOR and p-p38 decreased, and p-CREB increased in CR mice. On the contrary, GH increased levels of glucose, cholesterol and leptin in plasma, and p-mTOR or p-p38 in livers, and decreased plasma adiponectin and hepatic IR β-subunit compared to saline treatment. There were no GH effects on adiponectin in N mice. Moreover, GH replacement therapy did not affect IR, IRS-1 and GLUT-2 gene expression. GH treatment abolishes the beneficial effects of CR; it may suggest an important role of GH-IGF1 axis in mediating the CR action. Suppressed somatotrophic signaling seems to predominate over GH replacement therapy in the context of the examined parameters and signaling pathways. © 2014 Elsevier Inc

    Effect of Duration of Disease on Ventilatory Function in an Ethnic Saudi Group of Diabetic Patients

    No full text
    Diabetes mellitus is a leading cause of illness and death across the world and is responsible for a growing proportion of global health care expenditures. The present study was designed to observe the effect of diabetes mellitus on lung function in patients with diabetes belonging to a specific ethnic group, namely Saudis.This work was supported by Grant 02-438, College of Medicine Research Centre (CMRC), King Saud University, Riyadh, KSA.Corresponding Author: Sultan Ayoub Meo, MBBS, Ph.D., Department of Physiology (29), College of Medicine, King Khalid University Hospital, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia email: [email protected] or [email protected]

    Influence of social media on parents’ attitudes towards vaccine administration

    No full text
    Vaccination has had tremendous impact on human health. The tendency to hesitate or delay vaccination has been increasing, which has contributed to outbreaks of vaccine-preventable diseases. This cross-sectional study aimed to investigate the prevalence of childhood vaccine hesitancy and social media misconceptions in vaccine refusal among randomly selected parents from October 2019 through March 2020 in the outpatient clinics of King Khalid University Hospital, Riyadh, Saudi Arabia. The data were collected using a three-part questionnaire: the socio-demographic and economic questions, the Parents’ Attitudes about Childhood Vaccines (PACV) survey, and questions concerning social media use. Based on the PACV survey tool, 37 parents (11%) scored a value > 50 and were suggested as hesitant (8% hesitant and 3% very hesitant). Overall, 288 parents (89%) scored < 50, hence deemed to not be hesitant about childhood vaccination. There was no significant association between high educational level or social media exposure with vaccine hesitancy. The most commonly used social media platform was Twitter (40%). In conclusion, we report a low prevalence of vaccine hesitancy about childhood vaccination among parents, with no significant impact of education level or social media on vaccine hesitancy. Further studies are required to replicate these findings in other regions and cities to generalize these observations for Saudi Arabia

    Retardation of Bacterial Biofilm Formation by Coating Urinary Catheters with Metal Nanoparticle-Stabilized Polymers

    No full text
    Urinary catheter infections remain an issue for many patients and can complicate their health status, especially for individuals who require long-term catheterization. Catheters can be colonized by biofilm-forming bacteria resistant to the administered antibiotics. Therefore, this study aimed to investigate the efficacy of silver nanoparticles (AgNPs) stabilized with different polymeric materials generated via a one-step simple coating technique for their ability to inhibit biofilm formation on urinary catheters. AgNPs were prepared and characterized to confirm their formation and determine their size, charge, morphology, and physical stability. Screening of the antimicrobial activity of nanoparticle formulations and determining minimal inhibitory concentration (MIC) and their cytotoxicity against PC3 cells were performed. Moreover, the antibiofilm activity and efficacy of the AgNPs coated on the urinary catheters under static and flowing conditions were examined against a clinical isolate of Escherichia coli. The results showed that the investigated polymers could form physically stable AgNPs, especially those prepared using polyvinyl pyrrolidone (PVP) and ethyl cellulose (EC). Preliminary screening and MIC determinations suggested that the AgNPs-EC and AgNPs-PVP had superior antibacterial effects against E. coli. AgNPs-EC and AgNPs-PVP inhibited biofilm formation to 58.2% and 50.8% compared with AgNPs-PEG, silver nitrate solution and control samples. In addition, coating urinary catheters with AgNPs-EC and AgNPs-PVP at concentrations lower than the determined IC50 values significantly (p t-test) inhibited bacterial biofilm formation compared with noncoated catheters under both static and static and flowing conditions using two different types of commercial Foley urinary catheters. The data obtained in this study provide evidence that AgNP-coated EC and PVP could be useful as potential antibacterial and antibiofilm catheter coating agents to prevent the development of urinary tract infections caused by E. coli
    corecore