59 research outputs found
Myelodysplastic Disorders, 5q-Syndrome
The myelodysplastic syndromes (MDSs) are characterized by ineffective erythropoiesis and progressive cytopenia and ultimately affected patients develop acute myeloid leukemia (AML) or die from advanced bone marrow (BM) failure
Autologous Hematopoietic Stem Cell Transplantation for Multiple Myeloma without Cryopreservation
High-dose chemotherapy followed by autologous hematopoietic stem cell transplantation is considered the standard of care for multiple myeloma patients who are eligible for transplantation. The process of autografting comprises the following steps: control of the primary disease by using a certain induction therapeutic protocol, mobilization of stem cells, collection of mobilized stem cells by apheresis, cryopreservation of the apheresis product, administration of high-dose pretransplant conditioning therapy, and finally infusion of the cryopreserved stem cells after thawing. However, in cancer centers that treat patients with multiple myeloma and have transplantation capabilities but lack or are in the process of acquiring cryopreservation facilities, alternatively noncryopreserved autologous stem cell therapy has been performed with remarkable success as the pretransplant conditioning therapy is usually brief
Update on Leukemia in Pregnancy
Leukemia is a rare event in pregnancy. Acute leukemia represents 90% of leukemias occurring during pregnancy with AML accounting for two thirds of these cases. During the first trimester of pregnancy, standard chemotherapy has a teratogenicity rate of up to 20% depending on the specific agent employed. Exposure to cytotoxic agents during the second and third trimesters is not teratogenic but may predispose the fetus to growth retardation, premature delivery and bone marrow suppression. Additionally, the mother and the fetus are at risk of thromboembolism and sepsis. Only absolutely necessary radiologic work-up is justified during the first trimester of pregnancy as exposure to radiation during the first 2 weeks of pregnancy is usually lethal. Thereafter, radiation predisposes to congenital malformations, growth retardation and malignancy in the newborn. Although most infants exposed to multi-agent chemotherapy seem to suffer no long-term detrimental consequences, studies have shown that: (1) cytotoxic chemotherapy can cross the placenta and cause teratogenicity, (2) there is a potential risk of adult cancer after intrauterine exposure to radiation, and (3) cytotoxic chemotherapy and radiotherapy increase genetic defects in germ cells. In the first trimester, the termination of pregnancy should seriously be considered if the disease is aggressive and if intensive chemotherapy is needed. In the second and third trimesters, standard chemotherapy can safely be administered without resorting to pregnancy termination. The choice of specific regimens depends upon several factors that include: the gestational age, the clinical status of the patient, the specific type of leukemia and the anticipated toxicity of the cytotoxic agents employed. The decision is often difficult and confounded by several concerns, but the management of each pregnant patient with leukemia has to be individualized and should have a multidisciplinary approach. Vaginal delivery is preferable while caesarean section is reserved for certain obstetric complications. It is preferable to time delivery between 32 and 36 weeks of gestation to ensure optimal fetal maturation and it is recommended to avoid maternal bone marrow suppression prior to delivery
Hematopoietic Stem Cell Transplantation in Multiple Myeloma in the Era of Novel Therapies
Multiple myeloma is the second commonest hematologic malignancy. It is characterized by neoplastic proliferation of a single clone of plasma cells in the bone marrow producing a monoclonal immunoglobulin and ultimately causing various complications and organ dysfunction. Over the last 10 years, management of multiple myeloma has dramatically changed due to the introduction of several novel therapies that have improved the disease outcome and prognosis, as well as the quality of life of patients with myeloma due to their safety, tolerability and efficacy. Additionally, the widespread utilization of autologous hematopoietic stem cell transplantation, which is still the standard of care for transplant-eligible patients, and the implementation of new therapeutic strategies such as drug combinations in addition to consolidation and maintenance therapies have resulted in further improvements in response rates and survival in patients with multiple myeloma. This book chapter will be an update on the novel therapies and the recent treatment strategies in myeloma. The role of stem cell treatments in the era of novel therapies will be discussed thoroughly
Myelodysplastic Disorders, Monosomy 7
Myelodysplastic syndromes (MDSs) are heterogeneous hematopoietic disorders associated with various degrees of myelosuppression and transformation into acute leukemia. Chromosome 7 abnormalities occur at any age, have several disease associations, and are generally associated with poor outcome. Treatment of the associated disease conditions may have a positive impact on the outcome of certain types of MDSs. For patients eligible for hematopoietic stem cell transplantation (HSCT), allografts are the standard of care, while supportive measures and the use of hypomethylating agents, such as 5-azacytidine and decitabine, constitute the mainstay of management in individuals who are not fit for allogeneic HSCT. However, the use of hypomethylating agents in conjunction with allogeneic HSCT using nonmyeloablative conditioning therapies may be an appealing therapeutic option for older patients with comorbid medical conditions
Update on Non-M3 Acute Myeloid Leukemia — Etiology, Classification, Risk Stratification, Emergencies, Complications, Disease in Special Circumstances and Current and Future Therapeutics
Acute myeloid leukemia (AML) is a heterogeneous condition characterized by clonal proliferation of myeloid precursors and accumulation of leukemic blasts in the bone marrow (BM), ultimately resulting in failure of the BM. It accounts for approximately 80% of cases of acute leukemia in adults. AML has several life-threatening complications
The Rising Role of Mesenchymal Stem Cells in the Treatment of Various Infectious Complications
Mesenchymal stem cells are heterogenous adult multipotent stromal cells that can be isolated from various sources including: bone marrow, peripheral blood, umbilical cord blood, dental pulp, and adipose tissue. They have certain immunomodulatory, immunosuppressive, and antimicrobial properties that enable them to have several therapeutic and clinical applications including: treatment of autoimmune disorders, role in hematopoietic stem cell transplantation and regenerative medicine, as well as treatment of various infections and their associated complications such as septic shock and acute respiratory distress syndrome. Although more success has been achieved in preclinical trials on the use of mesenchymal stem cells in animal models than in human clinical trials, particularly in septic shock and Chagas disease, more progress has been made in both disorders after the recent use of specific sources and certain doses of mesenchymal stem cells. Nevertheless, the utilization of this type of stem cells has shown remarkable progress in the treatment of few infections such as tuberculosis. The clinical application of mesenchymal stem cells in the treatment of several diseases still faces real challenges that need to be resolved. The following book chapter will be an updated review on the role of mesenchymal stem cells in various infections and their complications
- …