16 research outputs found

    Hepatoprotective and Renoprotective Properties of Lovastatin-Loaded Ginger and Garlic Oil Nanoemulsomes: Insights into Serum Biological Parameters

    No full text
    Background and Objectives: Dyslipidemia is gaining much attention among healthcare professionals because of its high association with the malfunctioning of a number of normal physiological and metabolic processes in the body. Obesity is directly interconnected with dyslipidemia and is said to be a denouement of hyperlipidemia and, if left untreated, may lead to intense damage to organs that are directly involved in fat metabolism. The objective of this study was to investigate the synergistic antiobesity and anti-hyperlipidemic activities along with hepato- and renoprotective potential of nanoemulsomes (NES) of lovastatin (LTN)-loaded ginger (GR) and garlic (GL) oils. Materials and Methods: LTN nanoemulsomes co-encapsulated with GR oil and GL oil were prepared by a thin hydration technique. Eight-week-old male Wistar rats weighing 200–250 g were induced with hyperlipidemia via a high-fat diet (HFD) comprising 40% beef tallow. Body weight, serum biochemical lipid parameters, and those for liver and kidney functions, serum TC, LDL-C, vLDL-C, HDL-C, TG, atherogenic index (AI), ALT, AFT, ALP, γ-GT, total protein (TP), serum albumin and globulin ratio (A/G), serum creatinine, blood urea nitrogen (BUN) and blood urea, and histopathology of hematoxylin and eosin (H&E) stained liver and kidney sections of all aforementioned groups were examined in the treated animals. Results: Nanoemulsomes of LTN-loaded GR and GL oils provided synergistic effects with LTN, exerted better ameliorative actions in reducing serum TC, LDL-C, vLDL-C, triglycerides, and AI, and improved serum HDL-C levels. Serum ALT, AST, ALP, and γ-GT levels were in the normal range for nanoemulsome groups. H&E stained liver and kidney sections of these animals confirmed better hepatoprotective and renoprotective effects than LTN alone. Serum biochemical parameters for renal functions also claimed to be in the moderate range for nanoemulsome-treated groups. Conclusion: This study demonstrated that nanoemulsomes of LTN-loaded GR and GL oils synergistically provided better antihyperlipidemic, hepatoprotective, and renoprotective effects as compared to LTN alone

    SS-Drop: A Novel Message Drop Policy to Enhance Buffer Management in Delay Tolerant Networks

    No full text
    A challenged network is one where traditional hypotheses such as reduced data transfer error rates, end-to-end connectivity, or short transmissions have not gained much significance. A wide range of application scenarios are associated with such networks. Delay tolerant networking (DTN) is an approach that pursues to report the problems which reduce communication in disrupted networks. DTN works on store-carry and forward mechanism in such a way that a message may be stored by a node for a comparatively large amount of time and carry it until a proper forwarding opportunity appears. To store a message for long delays, a proper buffer management scheme is required to select a message for dropping upon buffer overflow. Every time dropping messages lead towards the wastage of valuable resources which the message has already consumed. The proposed solution is a size-based policy which determines an inception size for the selection of message for deletion as buffer becomes overflow. The basic theme behind this scheme is that by determining the exact buffer space requirement, one can easily select a message of an appropriate size to be discarded. By doing so, it can overcome unnecessary message drop and ignores biasness just before selection of specific sized message. The proposed scheme Spontaneous Size Drop (SS-Drop) implies a simple but intelligent mechanism to determine the inception size to drop a message upon overflow of the buffer. After simulation in ONE (Opportunistic Network Environment) simulator, the SS-Drop outperforms the opponent drop policies in terms of high delivery ratio by giving 66.3% delivery probability value and minimizes the overhead ratio up to 41.25%. SS-Drop also showed a prominent reduction in dropping of messages and buffer time average

    Smart delivery and retrieval of swab collection kit for COVID-19 test using autonomous Unmanned Aerial Vehicles

    No full text
    Drones, also known as Unmanned Aerial Vehicles (UAVs), are one of the highly emerging technologies of the modern day. Due to their small size, flying capabilities, and complex machinery, drones can be deployed in diverse fields, including agriculture, sports, entertainment, parcel delivery, disaster management, search and rescue, emergency medicine, and healthcare. In case of medical emergency, timely delivery of the required emergency kit is very important. This is often not possible in many underdeveloped countries due to lack of resources, traffic jams, congestion or challenging routes. Also, in times like today’s when the world is hit with COVID-19 pandemic, the movement is very limited due to lockdowns and emergency. In such case, drones can be deployed to deliver the emergency kits and collect samples for tests. This may save someones life as well as time and financial resources. In third world countries, the COVID-19 has spread chaos because of very limited hospitals, resources and staff. Therefore, it is difficult for the government and health officials to accommodate every patient or give him/her the care that he/she needs. Amidst the fear of pandemic, everyone is trying to undergo tests for COVID-19 which is difficult to handle In our research, we have proposed a solution that comprises smartphone application with the help of a patient sending a call to a healthcare centre for delivering emergency kit. The kit contains equipment with the help of which a person can collect swab. The drone takes the swab samples back to the healthcare centre for tests. We have introduced an optimization factor as a baseline for future studies of this kind. We have further conducted field experiments to test our proposed scheme. The results have shown that drones can be quite efficient in collecting samples and delivering emergency kits

    Effects of Soil Application of Chitosan and Foliar Melatonin on Growth, Photosynthesis, and Heavy Metals Accumulation in Wheat Growing on Wastewater Polluted Soil

    No full text
    Due to freshwater scarcity in developing countries, irrigating the arable land with wastewater poses potential ecological risks to the environment and food quality. Using cheap soil amendments and foliar application of a newly discovered molecule “melatonin” (ML) can alleviate these effects. The objectives of this pot study were to evaluate the effectiveness of the sole addition of chitosan (CH) and sugar beet factory lime (SBL) in wastewater impacted soil, foliar application of ML, and combining each soil amendment with ML on the heavy metals (HMs) accumulation, growth, nutritional quality and photosynthesis in wheat. Results showed that CH was more effective than SBL for reducing HMs bioavailability in soil, HMs distribution in plants, improving photosynthesis, nutritional quality, and growth. ML application also influenced plant parameters but less than CH and SBL. The CH+ML treatment was the most effective for influencing plant parameters and reducing HMs bioavailability in the soil. Compared to control, CH+ML significantly reduced the concentrations of Pb, Cd, Cr, Ni, Cu, and Co in roots, shoots, and grain up to 89%. We conclude that adding CH+ML in wastewater impacted soils can remediate the soil; reduce HMs concentrations in plants; and improve their photosynthesis, plant growth, grain yield, and nutrition

    Effects of Soil Application of Chitosan and Foliar Melatonin on Growth, Photosynthesis, and Heavy Metals Accumulation in Wheat Growing on Wastewater Polluted Soil

    No full text
    Due to freshwater scarcity in developing countries, irrigating the arable land with wastewater poses potential ecological risks to the environment and food quality. Using cheap soil amendments and foliar application of a newly discovered molecule “melatonin” (ML) can alleviate these effects. The objectives of this pot study were to evaluate the effectiveness of the sole addition of chitosan (CH) and sugar beet factory lime (SBL) in wastewater impacted soil, foliar application of ML, and combining each soil amendment with ML on the heavy metals (HMs) accumulation, growth, nutritional quality and photosynthesis in wheat. Results showed that CH was more effective than SBL for reducing HMs bioavailability in soil, HMs distribution in plants, improving photosynthesis, nutritional quality, and growth. ML application also influenced plant parameters but less than CH and SBL. The CH+ML treatment was the most effective for influencing plant parameters and reducing HMs bioavailability in the soil. Compared to control, CH+ML significantly reduced the concentrations of Pb, Cd, Cr, Ni, Cu, and Co in roots, shoots, and grain up to 89%. We conclude that adding CH+ML in wastewater impacted soils can remediate the soil; reduce HMs concentrations in plants; and improve their photosynthesis, plant growth, grain yield, and nutrition
    corecore