12 research outputs found

    Rapid, experience-dependent translation of neurogranin enables memory encoding

    Get PDF
    Experience induces de novo protein synthesis in the brain and protein synthesis is required for long-term memory. It is important to define the critical temporal window of protein synthesis and identify newly synthesized proteins required for memory formation. Using a behavioral paradigm that temporally separates the contextual exposure from the association with fear, we found that protein synthesis during the transient window of context exposure is required for contextual memory formation. Among an array of putative activity-dependent translational neuronal targets tested, we identified one candidate, a schizophrenia-associated candidate mRNA, neurogranin (Ng, encoded by the Nrgn gene) responding to novel-context exposure. The Ng mRNA was recruited to the actively translating mRNA pool upon novel-context exposure, and its protein levels were rapidly increased in the hippocampus. By specifically blocking activity-dependent translation of Ng using virus-mediated molecular perturbation, we show that experience-dependent translation of Ng in the hippocampus is required for contextual memory formation. We further interrogated the molecular mechanism underlying the experience-dependent translation of Ng, and found that fragile-X mental retardation protein (FMRP) interacts with the 3′UTR of the Nrgn mRNA and is required for activity-dependent translation of Ng in the synaptic compartment and contextual memory formation. Our results reveal that FMRP-mediated, experience-dependent, rapid enhancement of Ng translation in the hippocampus during the memory acquisition enables durable context memory encoding. Keywords: hippocampus; contextual memory; dentate gyrus; ASD; schizophreni

    Molecular organization, trafficking, and degradation of the GABA-B receptor

    Full text link

    K63-Linked Ubiquitination of GABAB1 at Multiple Sites by the E3 Ligase Mind Bomb-2 Targets GABAB Receptors to Lysosomal Degradation

    Full text link
    GABAB receptors are heterodimeric G protein-coupled receptors, which control neuronal excitability by mediating prolonged inhibition. The magnitude of GABAB receptor-mediated inhibition essentially depends on the amount of receptors in the plasma membrane. However, the factors regulating cell surface expression of GABAB receptors are poorly characterized. Cell surface GABAB receptors are constitutively internalized and either recycled to the plasma membrane or degraded in lysosomes. The signal that sorts GABAB receptors to lysosomes is currently unknown. Here we show that Mind bomb-2 (MIB2) mediated K63-linked ubiquitination of the GABAB1subunit at multiple sites is the lysosomal sorting signal for GABAB receptors. We found that inhibition of lysosomal activity in cultured rat cortical neurons increased the fraction of K63-linked ubiquitinated GABAB receptors and enhanced the expression of total as well as cell surface GABAB receptors. Mutational inactivation of four putative ubiquitination sites in theGABAB1 subunit significantly diminished K63-linked ubiquitination of GABAB receptors and prevented their lysosomal degradation. We identified MIB2 as the E3 ligase triggering K63-linked ubiquitination and lysosomal degradation of GABAB receptors. Finally, we show that sustained activation of glutamate receptors, a condition occurring in brain ischemia that downregulates GABAB receptors, considerably increased the expression of MIB2 and K63-linked ubiquitination of GABAB receptors. Interfering with K63-linked ubiquitination by overexpressing ubiquitin mutants or GABAB1 mutants deficient in K63-linked ubiquitination prevented glutamate-induced down-regulation of the receptors. These findings indicate that K63-linked ubiquitination of GABAB1 at multiple sites by MIB2 controls sorting of GABAB receptors to lysosomes for degradation under physiological and pathological condition

    Regulation of cell surface GABA(B) receptors: contribution to synaptic plasticity in neurological diseases

    Full text link
    γ-Amino butyric acid (GABA(B)) receptors are heterodimeric G protein-coupled receptors expressed throughout the central nervous system in virtually all neurons. They control the excitability of neurons via activation of different downstream effector systems in pre- and postsynaptic neurons and as such regulate all major brain functions including synaptic plasticity, neuronal network activity, and neuronal development. Accordingly, GABA(B) receptors have been implicated in a variety of neurological disorders and thus are regarded as promising drug targets. A key factor determining the extent of GABA(B) receptor-mediated inhibition is the level of receptors at the cell surface available for signaling. There is increasing evidence that cell surface expression of functional GABA(B) receptors is affected in neurological diseases. This diminishes inhibitory control of neuronal excitation and may contribute to the disease state. Here, we discuss recent findings on mechanisms involved in regulating cell surface expression of GABA(B) receptors in addiction, neuropathic pain, and brain ischemia

    Modulation of cell surface GABAB receptors by desensitization, trafficking and regulated degradation

    No full text
    Inhibitory neurotransmission ensures normal brain function by counteracting and integrating excitatory activity. γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system, and mediates its effects via two classes of receptors: the GABAA and GABAB receptors. GABAA receptors are heteropentameric GABA-gated chloride channels and responsible for fast inhibitory neurotransmission. GABAB receptors are heterodimeric G protein coupled receptors (GPCR) that mediate slow and prolonged inhibitory transmission. The extent of inhibitory neurotransmission is determined by a variety of factors, such as the degree of transmitter release and changes in receptor activity by posttranslational modifications (e.g., phosphorylation), as well as by the number of receptors present in the plasma membrane available for signal transduction. The level of GABAB receptors at the cell surface critically depends on the residence time at the cell surface and finally the rates of endocytosis and degradation. In this review we focus primarily on recent advances in the understanding of trafficking mechanisms that determine the expression level of GABAB receptors in the plasma membrane, and thereby signaling strength

    Ca²⁺/Calmodulin-Dependent Protein Kinase II (CaMKII) β-Dependent Phosphorylation of GABAB1 Triggers Lysosomal Degradation of GABAB Receptors via Mind Bomb-2 (MIB2)-Mediated Lys-63-Linked Ubiquitination

    No full text
    The G protein-coupled GABAB receptors, constituted from GABAB1 and GABAB2 subunits, are important regulators of neuronal excitability by mediating long-lasting inhibition. One factor that determines receptor availability and thereby the strength of inhibition is regulated protein degradation. GABAB receptors are constitutively internalized from the plasma membrane and are either recycled to the cell surface or degraded in lysosomes. Lys-63-linked ubiquitination mediated by the E3 ligase Mind bomb-2 (MIB2) is the signal that sorts GABAB receptors to lysosomes. However, it is unknown how Lys-63-linked ubiquitination and thereby lysosomal degradation of the receptors is regulated. Here, we show that Ca2+/calmodulin-dependent protein kinase II (CaMKII) promotes MIB2-mediated Lys-63-linked ubiquitination of GABAB receptors. We found that inhibition of CaMKII in cultured rat cortical neurons increased cell surface GABAB receptors, whereas overexpression of CaMKIIβ, but not CaMKIIα, decreased receptor levels. This effect was conveyed by Lys-63-linked ubiquitination of GABAB1 at multiple sites mediated by the E3 ligase MIB2. Inactivation of the CaMKII phosphorylation site on GABAB1(Ser-867) strongly reduced Lys-63-linked ubiquitination of GABAB receptors and increased their cell surface expression, whereas the phosphomimetic mutant GABAB1(S867D) exhibited strongly increased Lys-63-linked ubiquitination and reduced cell surface expression. Finally, triggering lysosomal degradation of GABAB receptors by sustained activation of glutamate receptors, a condition occurring in brain ischemia, was accompanied with a massive increase of GABAB1(Ser-867) phosphorylation-dependent Lys-63-linked ubiquitination of GABAB receptors. These findings indicate that CaMKIIβ-dependent Lys-63-linked ubiquitination of GABAB1 at multiple sites controls sorting of GABAB receptors to lysosomes for degradation under physiological and pathological condition

    The positive allosteric GABAB receptor modulator rac-BHFF enhances baclofen-mediated analgesia in neuropathic mice.

    Full text link
    Neuropathic pain is associated with impaired inhibitory control of spinal dorsal horn neurons, which are involved in processing pain signals. The metabotropic GABAB receptor is an important component of the inhibitory system and is highly expressed in primary nociceptors and intrinsic dorsal horn neurons to control their excitability. Activation of GABAB receptors with the orthosteric agonist baclofen effectively reliefs neuropathic pain but is associated with severe side effects that prevent its widespread application. The recently developed positive allosteric GABAB receptor modulators lack most of these side effects and are therefore promising drugs for the treatment of pain. Here we tested the high affinity positive allosteric modulator rac-BHFF for its ability to relief neuropathic pain induced by chronic constriction of the sciatic nerve in mice. rac-BHFF significantly increased the paw withdrawal threshold to mechanical stimulation in healthy mice, indicating an endogenous GABABergic tone regulating the sensitivity to mechanical stimuli. Surprisingly, rac-BHFF displayed no analgesic activity in neuropathic mice although GABAB receptor expression was not affected in the dorsal horn as shown by quantitative receptor autoradiography. However, activation of spinal GABAB receptors by intrathecal injection of baclofen reduced hyperalgesia and its analgesic effect was considerably potentiated by co-application of rac-BHFF. These results indicate that under conditions of neuropathic pain the GABAergic tone is too low to provide a basis for allosteric modulation of GABAB receptors. However, allosteric modulators would be well suited as an add-on to reduce the dose of baclofen required to achieve analgesia

    Ischemia-like oxygen and glucose deprivation mediates down-regulation of cell surface γ-aminobutyric acidB receptors via the endoplasmic reticulum (ER) stress-induced transcription factor CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CHOP)

    Full text link
    Cerebral ischemia frequently leads to long-term disability and death. Excitotoxicity is believed to be the main cause for ischemia-induced neuronal death. Although a role of glutamate receptors in this process has been firmly established, the contribution of metabotropic GABAB receptors, which control excitatory neurotransmission, is less clear. A prominent characteristic of ischemic insults is endoplasmic reticulum (ER) stress associated with the up-regulation of the transcription factor CCAAT/enhancer-binding protein-homologous protein (CHOP). After inducing ER stress in cultured cortical neurons by sustained Ca(2+) release from intracellular stores or by a brief episode of oxygen and glucose deprivation (in vitro model of cerebral ischemia), we observed an increased expression of CHOP accompanied by a strong reduction of cell surface GABAB receptors. Our results indicate that down-regulation of cell surface GABAB receptors is caused by the interaction of the receptors with CHOP in the ER. Binding of CHOP prevented heterodimerization of the receptor subunits GABAB1 and GABAB2 and subsequent forward trafficking of the receptors to the cell surface. The reduced level of cell surface receptors diminished GABAB receptor signaling and, thus, neuronal inhibition. These findings indicate that ischemia-mediated up-regulation of CHOP down-regulates cell surface GABAB receptors by preventing their trafficking from the ER to the plasma membrane. This mechanism leads to diminished neuronal inhibition and may contribute to excitotoxicity in cerebral ischemia
    corecore