28 research outputs found
Assessment of distribution and evolution of Mechanical dyssynchrony in a porcine model of myocardial infarction by cardiovascular magnetic resonance
BACKGROUND: We sought to investigate the relationship between infarct and dyssynchrony post- myocardial infarct (MI), in a porcine model. Mechanical dyssynchrony post-MI is associated with left ventricular (LV) remodeling and increased mortality.
METHODS: Cine, gadolinium-contrast, and tagged cardiovascular magnetic resonance (CMR) were performed pre-MI, 9 ± 2 days (early post-MI), and 33 ± 10 days (late post-MI) post-MI in 6 pigs to characterize cardiac morphology, location and extent of MI, and regional mechanics. LV mechanics were assessed by circumferential strain (eC). Electro-anatomic mapping (EAM) was performed within 24 hrs of CMR and prior to sacrifice.
RESULTS: Mean infarct size was 21 ± 4% of LV volume with evidence of post-MI remodeling. Global eC significantly decreased post MI (-27 ± 1.6% vs. -18 ± 2.5% (early) and -17 ± 2.7% (late), p < 0.0001) with no significant change in peri-MI and MI segments between early and late time-points. Time to peak strain (TTP) was significantly longer in MI, compared to normal and peri-MI segments, both early (440 ± 40 ms vs. 329 ± 40 ms and 332 ± 36 ms, respectively; p = 0.0002) and late post-MI (442 ± 63 ms vs. 321 ± 40 ms and 355 ± 61 ms, respectively; p = 0.012). The standard deviation of TTP in 16 segments (SD16) significantly increased post-MI: 28 ± 7 ms to 50 ± 10 ms (early, p = 0.012) to 54 ± 19 ms (late, p = 0.004), with no change between early and late post-MI time-points (p = 0.56). TTP was not related to reduction of segmental contractility. EAM revealed late electrical activation and greatly diminished conduction velocity in the infarct (5.7 ± 2.4 cm/s), when compared to peri-infarct (18.7 ± 10.3 cm/s) and remote myocardium (39 ± 20.5 cm/s).
CONCLUSIONS: Mechanical dyssynchrony occurs early after MI and is the result of delayed electrical and mechanical activation in the infarct
Magnetic Resonance Elastography Shear Wave Velocity Correlates with Liver Fibrosis and Hepatic Venous Pressure Gradient in Adults with Advanced Liver Disease
Background. Portal hypertension, an elevation in the hepatic venous pressure gradient (HVPG), can be used to monitor disease progression and response to therapy in cirrhosis. Since obtaining HVPG measurements is invasive, reliable noninvasive methods of assessing portal hypertension are needed. Methods. Noninvasive markers of fibrosis, including magnetic resonance elastography (MRE) shear wave velocity, were correlated with histologic fibrosis and HVPG measurements in hepatitis C (HCV) and/or HIVinfected patients with advanced liver disease enrolled in a clinical trial of treatment with simtuzumab, an anti-LOXL2 antibody. Results. This exploratory analysis includes 23 subjects: 9 with HCV monoinfection, 9 with HIV and HCV, and 5 with HIV and nonalcoholic steatohepatitis. Median Ishak fibrosis score was 4 (range 1-6); 11 subjects (48%) had cirrhosis. Median HVPG was 6 mmHg (range 3-16). Liver stiffness measured by MRE correlated with HVPG ( = 0.64, = 0.01), histologic fibrosis score ( = 0.71, = 0.004), noninvasive fibrosis indices, including APRI ( = 0.81, < 0.001), and soluble LOXL2 ( = 0.82, = 0.001). On stepwise multivariate regression analysis, MRE was the only variable independently associated with HVPG ( 2 = 0.377, = 0.02). Conclusions. MRE of the liver correlated independently with HVPG. MRE is a valid noninvasive measure of liver disease severity and may prove to be a useful tool for noninvasive portal hypertension assessment. Trial Registration Number. This trial is registered with NCT01707472
FAST MOTION IMAGING USING REDUCED FIELD OF VIEW PARTIAL FOURIER MRI
Fast MR imaging techniques often exploit the redundancy present in an underlying MR image time series to compensate for k-space undersampling. When imaging motion using techniques like HARP, DENSE, and phase contrast (PC), it is the phase in static regions that is constant and therefore redundant. In this paper, we present a technique that first estimates the phase in the static portion of an undersampled MR image time series and then uses a partial Fourier reconstruction technique to combine phase in the static portion and undersampled data to reconstruct the full image time series. The technique is illustrated using a computational phantom undergoing simulated cardiac motion and imaged using the HARP protocol. Results demonstrate a gradual degradation of accuracy with loss of data due to undersampling, indicating that a 25 % speedup in imaging time is possible for an image time series in which 50 % of the pixels correspond to the object that do not move over time. Index Terms — MRI, Partial Fourier MR image reconstruction