6 research outputs found

    Modeling and Experimentation of New Thermoelectric Cooler–Thermoelectric Generator Module

    No full text
    In this work, a modeling and experimental study of a new thermoelectric cooler–thermoelectric generator (TEC-TEG) module is investigated. The studied module is composed of TEC, TEG and total system heatsink, all connected thermally in series. An input voltage (1–5 V) passes through the TEC where the electrons by means of Peltier effect entrain the heat from the upper side of the module to the lower one creating temperature difference; TEG plays the role of a partial heatsink for the TEC by transferring this waste heat to the total system heatsink and converting an amount of this heat into electricity by a phenomenon called Seebeck effect, of the thermoelectric modules. The performance of the TEG as partial heatsink of TEC at different input voltages is demonstrated theoretically using the modeling software COMSOL Multiphysics. Moreover, the experiment validates the simulation result which smooths the path for a new manufacturing thermoelectric cascade model for the cooling and the immediate electric power generation

    Stabilized Solution to Spurious Mode Problem and Ill-Conditioning in Interface Force Based Substructure Coupling Method

    No full text
    There are two major types of substructure mode synthesis methods, i.e., the fixed-interface component mode synthesis and free-interface component mode synthesis. There are two coupling methods, the interface degrees of freedom based coupling method and the interface force based coupling method, the former one is referred to as the primary assembly method, and the latter is referred to as the dual assembly method. However, the dual assembly method is theoretically shown to be unstable in this research, such reduced stiffness matrix is indefinite, this fatal weakness can be conquered by further interface reduction, and the interface compatibility is therefore rigorously enforced. Unfortunately, Craig’s method leads to another numerical instability when inverting a submatrix of residual flexibility on the interface degrees of freedom, this problem is neglectable in small dimensional matrix problems, but it is prominent in large models when the number of interface degrees of freedom is large, this ill-conditioning problem may be circumvented by truncated singular value decomposition technique; here, a more efficient strategy is proposed, the substructure reduction is modified, this modification proves to be numerically stable, and it can be even more accurate than the prevailing Craig-Bampton method; the numerical examples validate the suggestion

    A Fast-Acting Diagnostic Algorithm of Insulated Gate Bipolar Transistor Open Circuit Faults for Power Inverters in Electric Vehicles

    No full text
    To improve the diagnostic detection speed in electric vehicles, a novel diagnostic algorithm of insulated gate bipolar transistor (IGBT) open circuit faults for power inverters is proposed in this paper. The average of the difference between the actual three-phase current and referential three-phase current values over one electrical period is used as the diagnostic variable. The normalization method based on the amplitude of the d-q axis referential current is applied to the diagnostic variables to improve the response speed of diagnosis, and to avoid the noise and the delay caused by signal acquisition. In the parameter discretization process, the variable parameter moving average method (VPMAM) is adopted to solve the variation of the average value over a period with the speed of the motor; hence, the diagnostic reliability of the system is improved. This algorithm is robust, independent of load variations, and has a high resistivity against false alarms. Since only the three-phase current of the motor is utilized for calculations in the time domain, a fast diagnostic detection speed can be achieved, which is significantly essential for real-time control in electric vehicles. The effectiveness of the proposed algorithm is verified by both simulation and experimental results

    A New Diagnostic Algorithm for Multiple IGBTs Open Circuit Faults by the Phase Currents for Power Inverter in Electric Vehicles

    No full text
    In order to simplify the application and improve diagnostic speed of the diagnostics, a novel method to diagnose multiple open circuit faults in insulated gate bipolar transistors (IGBTs) by three-phase currents for power inverter in electric vehicles is presented. The summation of currents with semi-period phase-difference is described in diagnostic variables with exploration of the current information in faulty condition. In contrast with plentiful existing methods which rely on the motor models and control parameters, this algorithm merely requires phase currents. Meanwhile, the normalized way based on the absolute phase currents and variable parameter moving average method are applied to improve the diagnostic speed and independence of load variation, which contributes to the real-time application in the electric vehicles. Experimental results, using a vector-controlled permanent magnet synchronous motor (PMSM) and digital signal processor MC56F8346, are presented to verify the algorithm effectiveness, showing many features, such as applicability for multiple open circuit faults, well-robustness against false alarms, briefness and agility for the diagnosis function
    corecore