101 research outputs found

    Domains in Melts of Comb-Coil Diblock Copolymers: Superstrong Segregation Regime

    Get PDF
    Conditions for the crossover from the strong to the superstrong segregation regime are analyzed for the case of comb-coil diblock copolymers. It is shown that the critical interaction energy between the components required to induce the crossover to the superstrong segregation regime is inversely proportional to mb = 1 + n/m, where n is the degree of polymerization of the side chain and m is the distance between successive grafting points. As a result, the superstrong segregation regime, being rather rare in the case of ordinary block copolymers, has a much better chance to be realized in the case of diblock copolymers with combs grafted to one of the blocks.

    Structure of Colloid-Polymer Suspensions

    Full text link
    We discuss structural correlations in mixtures of free polymer and colloidal particles based on a microscopic, 2-component liquid state integral equation theory. Whereas in the case of polymers much smaller than the spherical particles the relevant polymer degree of freedom is the center of mass, for polymers larger than the (nano-) particles conformational rearrangements need to be considered. They have the important consequence that the polymer depletion layer exhibits two widely different length scales, one of the order of the particle radius, the other of the order of the polymer radius or the polymer density screening length in dilute or semidilute concentrations, respectively. Their consequences on phase stability and structural correlations are discussed extensively.Comment: 37 pages, 17 figures; topical feature articl

    Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies

    Full text link
    It has been assumed until very recently that all long-range correlations are screened in three-dimensional melts of linear homopolymers on distances beyond the correlation length ξ\xi characterizing the decay of the density fluctuations. Summarizing simulation results obtained by means of a variant of the bond-fluctuation model with finite monomer excluded volume interactions and topology violating local and global Monte Carlo moves, we show that due to an interplay of the chain connectivity and the incompressibility constraint, both static and dynamical correlations arise on distances r≫ξr \gg \xi. These correlations are scale-free and, surprisingly, do not depend explicitly on the compressibility of the solution. Both monodisperse and (essentially) Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure

    Non-ionic Thermoresponsive Polymers in Water

    Full text link

    Entropy-driven polymer collapse: Application of the hybrid MC/RISM method to the study of conformational transitions in macromolecules interacting with hard colloidal particles

    No full text
    Self-consistent hybrid MC/RISM method is used for calculating properties of a linear polymer surrounded by colloidal particles with purely repulsive, hard-core, interactions between the particles and chain beads. Our approach combines the traditional atomistic Monte-Carlo (MC) simulation of flexible polymer chains with the numerical solution of the site-site Ornstein-Zernike-like (RISM) integral equations. Since the condensed-phase environment of a flexible macromolecule affects the equilibrium configuration probability distribution of the macromolecule, the site-site intramolecular correlation function and the intramolecular potential field are treated in a self-consistent manner. It is shown that in such an athermal system the medium-induced collapse of a polymer (similar to polymer collapse in a poor solvent) may occur. Our analysis yields a simple "entropic" interpretation of this transition. We present the detailed study of the dependence of conformational properties of the chains on the degree of polymerization, density and size of colloidal particles

    Mechanism of solution of poly(ethylene terephthalate) in ethylene glycol

    No full text

    Conformation-dependent sequence design: evolutionary approach

    No full text
    A new modification of evolutionary approach to sequence design of copolymers has been proposed. A model of step-by-step evolution of a two-letter (HP) copolymer sequence has been studied by means of a coarse-grained Monte Carlo algorithm. The conditions for accepting a change in the primary sequence depend on the spatial conformation of HP-copolymer chain. This leads to a coupling between sequence and conformation and to formation of protein-like conformations and primary sequences (for some values of parameters of the model) independently of initial sequence and/or conformation. Simple theory describing these computer simulation observations is developed
    • …
    corecore