1,016 research outputs found

    Dynamical Constraints on the Origin of Multiple Stellar Populations in Globular Clusters

    Get PDF
    We have carried out a large grid of N-body simulations in order to investigate if mass-loss as a result of primordial gas expulsion can be responsible for the large fraction of second generation stars in globular clusters (GCs) with multiple stellar populations (MSPs). Our clusters start with two stellar populations in which 10%10\% of all stars are second generation stars. We simulate clusters with different initial masses, different ratios of the half-mass radius of first to second generation stars, different primordial gas fractions and Galactic tidal fields with varying strength. We then let our clusters undergo primordial gas-loss and obtain their final properties such as mass, half-mass radius and the fraction of second generation stars. Using our N-body grid we then perform a Monte Carlo analysis to constrain the initial masses, radii and required gas expulsion time-scales of GCs with MSPs. Our results can explain the present-day properties of GCs only if (1) a substantial amount of gas was present in the clusters after the formation of second generation stars and (2) gas expulsion time-scales were extremely short (105\lesssim 10^5 yr). Such short gas expulsion time-scales are in agreement with recent predictions that dark remnants have ejected the primordial gas from globular clusters, and pose a potential problem for the AGB scenario. In addition, our results predict a strong anti-correlation between the number ratio of second-generation stars in GCs and the present-day mass of GCs. So far, the observational data show only a significantly weaker anti-correlation, if any at all.Comment: 14 pages, 6 figures, 3 tables, typos corrected. Accepted for publication in MNRA

    Multi-Antenna Coded Caching

    Full text link
    In this paper we consider a single-cell downlink scenario where a multiple-antenna base station delivers contents to multiple cache-enabled user terminals. Based on the multicasting opportunities provided by the so-called Coded Caching technique, we investigate three delivery approaches. Our baseline scheme employs the coded caching technique on top of max-min fair multicasting. The second one consists of a joint design of Zero-Forcing (ZF) and coded caching, where the coded chunks are formed in the signal domain (complex field). The third scheme is similar to the second one with the difference that the coded chunks are formed in the data domain (finite field). We derive closed-form rate expressions where our results suggest that the latter two schemes surpass the first one in terms of Degrees of Freedom (DoF). However, at the intermediate SNR regime forming coded chunks in the signal domain results in power loss, and will deteriorate throughput of the second scheme. The main message of our paper is that the schemes performing well in terms of DoF may not be directly appropriate for intermediate SNR regimes, and modified schemes should be employed.Comment: 7 pages, 2 figure

    Proxy-based Mobile Computing Infrastructure

    Get PDF
    In recent years, there has been a huge growth in mobile applications. More mobile users are able to access Internet services via their mobile devices e.g., smartphones ans tablets. Some of these applications are highly interactive and resource intensive. Mobile applications, with limited storage capacity, slow processors and limited battery life, could be connected to the remote servers in clouds for leveraging resources. For example, weather applications use a remote service that collects weather data and make this data available through a well-defined API. This represents a static partitioning of functionality between mobile devices and a remote server that is determined at run-time. Regardless of the network distance between the cloud infrastructure and the mobile device, the use of a remote service is well suited for mobile device applications with relatively little data to be transferred. However, long distances between a mobile device and remote services makes this approach unsuitable for applications that require larger amounts of data to be transferred and/or have a high level of interactiveness with the user. This includes mobile video communications (e.g., Skype, Face-Time, Google-Hangout), gaming applications that require sophisticated rendering and cloud media analysis that can be used to offer more personalized services. The latency incurred with this architecture makes it difficult to support real-time and interactive applications. A related problem is that the static partitioning strategy is not always suitable for all network conditions and inputs. For example, let us consider a speech recognition application. The performance depends on the size of the input and the type of connectivity to the backbone. Another challenge is that the communication medium between the mobile application and the remote service includes wireless links. Wireless links are more error prone and have less bandwidth than wired links. Often a mobile application may be disconnected. One approach to addressing these challenges is the use of a proxy. A proxy is computing power that is located at the network edge. This allows it to address problems with latency. It is possible for a proxy to have services that allow for offloading tasks from either the cloud or the mobile device and to deal with communication challenges between the mobile application and the mobile device. This work proposes a proxy-based system that acts as a middleware between the mobile application and the remote service. The proposed middleware consists of a set of proxies that provide services. The proposed middleware includes services for proxy discovery and selection, mechanisms for dealing with balancing loads on proxies and handoff. A prototype was developed to assess the effectiveness of the proposed proxy-based system

    Dibromido{2-[(4-nitro­phen­yl)imino­meth­yl]pyridine-κ2 N,N′}zinc(II)

    Get PDF
    In the title compound, [ZnBr2(C12H9N3O2)], the ZnII ion is bonded to two Br ions and two N atoms of the diimine ligand in a distorted tetra­hedral geometry. With the exception of the Br atoms, all other atoms are disordered over two sets of sites corresponding to a 180° rotation of the mol­ecule along [02]. The refined occupancies of the components are 0.809 (2) and 0.191 (2). In addition, the crystal studied was a non-merohedral twin with a refined component ratio of 0.343 (2):0.657 (2)
    corecore