8 research outputs found

    Stomach Engineering: Region-specific Characterization of the Decellularized Porcine Stomach

    Get PDF
    Purpose Patients affected by microgastria, severe gastroesophageal reflux, or those who have undergone subtotal gastrectomy, have commonly described reporting dumping syndromes or other symptoms that seriously impair the quality of their life. Gastric tissue engineering may offer an alternative approach to treating these pathologies. Decellularization protocols have great potential to generate novel biomaterials for large gastric defect repair. There is an urgency to define more reliable protocols to foster clinical applications of tissue-engineered decellularized gastric grafts. Methods In this work, we investigated the biochemical and mechanical properties of decellularized porcine stomach tissue compared to its native counterpart. Histological and immunofluorescence analyses were performed to screen the quality of decellularized samples. Quantitative analysis was also performed to assess extracellular matrix composition. At last, we investigated the mechanical properties and cytocompatibility of the decellularized tissue compared to the native. Results The optimized decellularization protocol produced efficient cell removal, highlighted in the absence of native cellular nuclei. Decellularized scaffolds preserved collagen and elastin contents, with partial loss of sulfated glycosaminoglycans. Decellularized gastric tissue revealed increased elastic modulus and strain at break during mechanical tensile tests, while ultimate tensile strength was significantly reduced. HepG2 cells were seeded on the ECM, revealing matrix cytocompatibility and the ability to support cell proliferation. Conclusion Our work reports the successful generation of acellular porcine gastric tissue able to support cell viability and proliferation of human cells

    Intussusception and COVID-19 in Infants: Evidence for an Etiopathologic Correlation

    No full text
    Non-respiratory conditions related to SARS-CoV-2 infections have been largely described. Ileocolic intussusception has been reported in association with SARS-CoV-2 infection in ten children, raising the possibility of an etiopathologic role for the virus, but none of these cases documented tissue pathology that would have supported SARS-CoV-2 intestinal inflammation. We report two cases of intussusception in patients with SARS-CoV-2 infection who were treated at different pediatric tertiary centers in Europe and provide evidence of the presence of the virus in mesenteric and intestinal tissues of the patients

    Stomach engineering: region-specific characterization of the decellularized porcine stomach

    No full text
    Purpose: Patients affected by microgastria, severe gastroesophageal reflux, or those who have undergone subtotal gastrectomy, have commonly described reporting dumping syndromes or other symptoms that seriously impair the quality of their life. Gastric tissue engineering may offer an alternative approach to treating these pathologies. Decellularization protocols have great potential to generate novel biomaterials for large gastric defect repair. There is an urgency to define more reliable protocols to foster clinical applications of tissue-engineered decellularized gastric grafts. Methods: In this work, we investigated the biochemical and mechanical properties of decellularized porcine stomach tissue compared to its native counterpart. Histological and immunofluorescence analyses were performed to screen the quality of decellularized samples. Quantitative analysis was also performed to assess extracellular matrix composition. At last, we investigated the mechanical properties and cytocompatibility of the decellularized tissue compared to the native. Results: The optimized decellularization protocol produced efficient cell removal, highlighted in the absence of native cellular nuclei. Decellularized scaffolds preserved collagen and elastin contents, with partial loss of sulfated glycosaminoglycans. Decellularized gastric tissue revealed increased elastic modulus and strain at break during mechanical tensile tests, while ultimate tensile strength was significantly reduced. HepG2 cells were seeded on the ECM, revealing matrix cytocompatibility and the ability to support cell proliferation. Conclusion: Our work reports the successful generation of acellular porcine gastric tissue able to support cell viability and proliferation of human cells

    iASPP/p63 autoregulatory feedback loop is required for the homeostasis of stratified epithelia

    No full text
    iASPP, an inhibitory member of the ASPP (apoptosis stimulating protein of p53) family, is an evolutionarily conserved inhibitor of p53 which is frequently upregulated in human cancers. However, little is known about the role of iASPP under physiological conditions. Here, we report that iASPP is a critical regulator of epithelial development. We demonstrate a novel autoregulatory feedback loop which controls crucial physiological activities by linking iASPP to p63, via two previously unreported microRNAs, miR-574-3p and miR-720. By investigating its function in stratified epithelia, we show that iASPP participates in the p63-mediated epithelial integrity program by regulating the expression of genes essential for cell adhesion. Silencing of iASPP in keratinocytes by RNA interference promotes and accelerates a differentiation pathway, which also affects and slowdown cellular proliferation. Taken together, these data reveal iASPP as a key regulator of epithelial homeostasis

    Multi-stage bioengineering of a layered oesophagus with in vitro expanded muscle and epithelial adult progenitors

    Get PDF
    A tissue engineered oesophagus could overcome limitations associated with oesophageal substitution. Combining decellularized scaffolds with patient-derived cells shows promise for regeneration of tissue defects. In this proof-of-principle study, a two-stage approach for generation of a bio-artificial oesophageal graft addresses some major challenges in organ engineering, namely: (i) development of multi-strata tubular structures, (ii) appropriate re-population/maturation of constructs before transplantation, (iii) cryopreservation of bio-engineered organs and (iv) in vivo pre-vascularization. The graft comprises decellularized rat oesophagus homogeneously re-populated with mesoangioblasts and fibroblasts for the muscle layer. The oesophageal muscle reaches organised maturation after dynamic culture in a bioreactor and functional integration with neural crest stem cells. Grafts are pre-vascularised in vivo in the omentum prior to mucosa reconstitution with expanded epithelial progenitors. Overall, our optimised two-stage approach produces a fully re-populated, structurally organized and pre-vascularized oesophageal substitute, which could become an alternative to current oesophageal substitutes
    corecore