359 research outputs found

    Vibrational excitation of water by electron impact

    Get PDF
    Experimental and calculated differential cross sections (DCSs) for electron-impact excitation of the (010) bending mode and unresolved (100) symmetric and (001) antisymmetric stretching modes of water are presented. Measurements are reported at incident energies of 1–100 eV and scattering angles of 10°–130° and are normalized to the elastic-scattering DCSs for water determined earlier by our group. The calculated cross sections are obtained in the adiabatic approximation from fixed-nuclei, electronically elastic scattering calculations using the Schwinger multichannel method. The present results are compared to available experimental and theoretical data

    Collisions of low-energy electrons with isopropanol

    Get PDF
    We report measured and calculated cross sections for elastic scattering of low-energy electrons by isopropanol (propan-2-ol). The experimental data were obtained using the relative flow technique with helium as the standard gas and a thin aperture as the collimating target gas source, which permits use of this method without the restrictions imposed by the relative flow pressure conditions on helium and the unknown gas. The differential cross sections were measured at energies of 1.5, 2, 3, 5, 6, 8, 10, 15, 20, and 30 eV and for scattering angles from 10∘ to 130∘. The cross sections were computed over the same energy range employing the Schwinger multichannel method in the static-exchange plus polarization approximation. Agreement between theory and experiment is very good. The present data are compared with previously calculated and measured results for n-propanol, the other isomer of C_3H_7OH. Although the integral and momentum transfer cross sections for the isomers are very similar, the differential cross sections show a strong isomeric effect: In contrast to the f-wave behavior seen in scattering by n-propanol, d-wave behavior is observed in the cross sections of isopropanol. These results corroborate our previous observations in electron collisions with isomers of C_4H_9OH

    Elastic electron scattering by laser-excited 138Ba( ... 6s6p 1P1) atoms

    Get PDF
    The results of a joint experimental and theoretical study concerning elastic electron scattering by laser-excited 138Ba( ... 6s6p 1P1) atoms are described. These studies demonstrate several important aspects of elastic electron collisions with coherently excited atoms, and are the first such studies. From the measurements, collision and coherence parameters, as well as cross sections associated with an atomic ensemble prepared with an arbitrary in-plane laser geometry and linear polarization (with respect to the collision frame), or equivalently with any magnetic sublevel superposition, have been obtained at 20 eV impact energy and at 10°, 15° and 20° scattering angles. The convergent close-coupling (CCC) method was used within the non-relativistic LS-coupling framework to calculate the magnetic sublevel scattering amplitudes. From these amplitudes all the parameters and cross sections at 20 eV impact energy were extracted in the full angular range in 1° steps. The experimental and theoretical results were found to be in good agreement, indicating that the CCC method can be reliably applied to elastic scattering by 138Ba( ... 6s6p 1P1) atoms, and possibly to other heavy elements when spin-orbit coupling effects are negligible. Small but significant asymmetry was observed in the cross sections for scattering to the left and to the right. It was also found that elastic electron scattering by the initially isotropic atomic ensemble resulted in the creation of significant alignment. As a byproduct of the present studies, elastic scattering cross sections for metastable 138Ba atoms were also obtained

    Low-energy electron scattering from methanol and ethanol

    Get PDF
    Measured and calculated differential cross sections for elastic (rotationally unresolved) electron scattering from two primary alcohols, methanol (CH3OH) and ethanol (C2H5OH), are reported. The measurements are obtained using the relative flow method with helium as the standard gas and a thin aperture as the collimating target gas source. The relative flow method is applied without the restriction imposed by the relative flow pressure conditions on helium and the unknown gas. The experimental data were taken at incident electron energies of 1, 2, 5, 10, 15, 20, 30, 50, and 100 eV and for scattering angles of 5°–130°. There are no previous reports of experimental electron scattering differential cross sections for CH3OH and C2H5OH in the literature. The calculated differential cross sections are obtained using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons. Comparison between theory and experiment shows that theory is able to describe low-energy electron scattering from these polyatomic targets quite well

    Electron-impact excitation of X 1Sigma<sub>g</sub><sup>+</sup>(v[double-prime]=0) to the a[double-prime] 1Sigma<sub>g</sub><sup>+</sup>, b 1Piu, c3 1Piu, o3 1Piu, b[prime] 1Sigma<sub>u</sub><sup>+</sup>, c<sub>4</sub><sup>[prime]</sup> 1Sigma<sub>u</sub><sup>+</sup>, G 3Piu, and F 3Piu states of molecular nitrogen

    Get PDF
    Measurements of differential cross sections (DCSs) for electron-impact excitation of the a[double-prime] 1Sigmag+, b 1Piu, c3 1Piu, o3 1Piu, b[prime] 1Sigmau+, c4[prime] 1Sigmau+, G 3Piu, and F 3Piu states in N2 from the X 1Sigmag+(v[double-prime]=0) ground level are presented. The DCSs were obtained from energy-loss spectra in the region of 12 to 13.82 eV measured at incident energies of 17.5, 20, 30, 50, and 100 eV and for scattering angles ranging from 2° to 130°. The analysis of the spectra follows a different algorithm from that employed in a previous study of N2 for the valence states [Khakoo et al. Phys. Rev. A 71, 062703 (2005)], since the 1Piu and 1Sigmau+ states form strongly interacting Rydberg-valence series. The results are compared with existing data
    • …
    corecore