25 research outputs found

    In a model of Batten disease, palmitoyl protein thioesterase-1 deficiency is associated with brown adipose tissue and thermoregulation abnormalities

    Get PDF
    Infantile neuronal ceroid lipofuscinosis (INCL) is a fatal neurodegenerative disorder caused by a deficiency of palmitoyl-protein thioesterase-1 (PPT1). We have previously shown that children with INCL have increased risk of hypothermia during anesthesia and that PPT1-deficiency in mice is associated with disruption of adaptive energy metabolism, downregulation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), and mitochondrial dysfunction. Here we hypothesized that Ppt1-knockout mice, a well-studied model of INCL that shows many of the neurologic manifestations of the disease, would recapitulate the thermoregulation impairment observed in children with INCL. We also hypothesized that when exposed to cold, Ppt1-knockout mice would be unable to maintain body temperature as in mice thermogenesis requires upregulation of Pgc-1α and uncoupling protein 1 (Ucp-1) in brown adipose tissue. We found that the Ppt1-KO mice had lower basal body temperature as they aged and developed hypothermia during cold exposure. Surprisingly, this inability to maintain body temperature during cold exposure in Ppt1-KO mice was associated with an adequate upregulation of Pgc-1α and Ucp-1 but with lower levels of sympathetic neurotransmitters in brown adipose tissue. In addition, during baseline conditions, brown adipose tissue of Ppt1-KO mice had less vacuolization (lipid droplets) compared to wild-type animals. After cold stress, wild-type animals had significant decreases whereas Ppt1-KO had insignificant changes in lipid droplets compared with baseline measurements, thus suggesting that Ppt1-KO had less lipolysis in response to cold stress. These results uncover a previously unknown phenotype associated with PPT1 deficiency, that of altered thermoregulation, which is associated with impaired lipolysis and neurotransmitter release to brown adipose tissue during cold exposure. These findings suggest that INCL should be added to the list of neurodegenerative diseases that are linked to alterations in peripheral metabolic processes. In addition, extrapolating these findings clinically, impaired thermoregulation and hypothermia are potential risks in patients with INCL

    Modulation of social deficits and repetitive behaviors in a mouse model of autism: The role of the nicotinic cholinergic system

    No full text
    Rationale: Accumulating evidence implicates the nicotinic cholinergic system in autism spectrum disorder (ASD) pathobiology. Neuropathologic studies suggest that nicotinic acetylcholine (ACh) receptor (nAChR) subtypes are altered in brain of autistic individuals. In addition, strategies that increase ACh, the neurotransmitter for nicotinic and muscarinic receptors, appear to improve cognitive deficits in neuropsychiatric disorders and ASD. Objective: The aim of this study is to examine the role of the nicotinic cholinergic system on social and repetitive behavior abnormalities and exploratory physical activity in a well-studied model of autism, the BTBR T+ Itpr3 tf /J (BTBR) mouse. Methods: Using a protocol known to up-regulate expression of brain nAChR subtypes, we measured behavior outcomes before and after BTBR and C57BL/6J (B6) mice were treated (4 weeks) with vehicle or nicotine (50, 100, 200, or 400 μg/ml). Results: Increasing nicotine doses were associated with decreases in water intake, increases in plasma cotinine levels, and at the higher dose (400 μg/ml) with weight loss in BTBR mice. At lower (50, 100 μg/ml) but not higher (200, 400 μg/ml) doses, nicotine increased social interactions in BTBR and B6 mice and at higher, but not lower doses, it decreased repetitive behavior in BTBR. In the open-field test, nicotine at 200 and 400 μg/ml, but not 100 μg/ml compared with vehicle, decreased overall physical activity in BTBR mice. Conclusions: These findings support the hypotheses that the nicotinic cholinergic system modulates social and repetitive behaviors and may be a therapeutic target to treat behavior deficits in ASD. Further, the BTBR mouse may be valuable for investigations of the role of nAChRs in social deficits and repetitive behavior

    Altered Nocifensive Behavior in Animal Models of Autism Spectrum Disorder: The Role of the Nicotinic Cholinergic System.

    No full text
    Caretakers and clinicians alike have long recognized that individuals with autism spectrum disorder (ASD) can have altered sensory processing, which can contribute to its core symptoms. However, the pathobiology of sensory alterations in ASD is poorly understood. Here we examined nocifensive behavior in ASD mouse models, the BTBR T(+)Itpr3(tf)/J (BTBR) and the fragile-X mental retardation-1 knockout (Fmr1-KO) mice. We also examined the effects of nicotine on nocifensive behavior given that nicotine, a nicotinic cholinergic receptor (nAChR) agonist that has antinociceptive effects and was shown to improve social deficits and decrease repetitive behaviors in BTBR mice. Compared to respective controls, both BTBR and Fmr1-KO had hyporesponsiveness to noxious thermal stimuli and electrical stimulation of C-sensory fibers, normal responsiveness to electrical stimulation of Aβ- and Aδ-fiber, and hyperresponsiveness to visceral pain after acetic acid intraperitoneal injection. In BTBR, nicotine at lower doses increased, whereas at higher doses, it decreased hotplate latency compared to vehicle. In a significantly different effect pattern, in control mice, nicotine had antinociceptive effects to noxious heat only at the high dose. Interestingly, these nocifensive behavior alterations and differential responses to nicotine antinociceptive effects in BTBR mice were associated with significant downregulation of α3, α4, α5, α7, β2, β3, and β4 nAChR subunits in several cerebral regions both, during embryonic development and adulthood. Taken together, these findings further implicate nAChRs in behaviors alterations in the BTBR model and lend support to the hypothesis that nAChRs may be a target for treatment of behavior deficits and sensory dysfunction in ASD

    Modulation of social deficits and repetitive behaviors in a mouse model of autism: the role of the nicotinic cholinergic system.

    No full text
    Rationale: Accumulating evidence implicates the nicotinic cholinergic system in autism spectrum disorder (ASD) pathobiology. Neuropathologic studies suggest that nicotinic acetylcholine (ACh) receptor (nAChR) subtypes are altered in brain of autistic individuals. In addition, strategies that increase ACh, the neurotransmitter for nicotinic and muscarinic receptors, appear to improve cognitive deficits in neuropsychiatric disorders and ASD. Objective: The aim of this study is to examine the role of the nicotinic cholinergic system on social and repetitive behavior abnormalities and exploratory physical activity in a well-studied model of autism, the BTBR T+ Itpr3 tf /J (BTBR) mouse. Methods: Using a protocol known to up-regulate expression of brain nAChR subtypes, we measured behavior outcomes before and after BTBR and C57BL/6J (B6) mice were treated (4 weeks) with vehicle or nicotine (50, 100, 200, or 400 μg/ml). Results: Increasing nicotine doses were associated with decreases in water intake, increases in plasma cotinine levels, and at the higher dose (400 μg/ml) with weight loss in BTBR mice. At lower (50, 100 μg/ml) but not higher (200, 400 μg/ml) doses, nicotine increased social interactions in BTBR and B6 mice and at higher, but not lower doses, it decreased repetitive behavior in BTBR. In the open-field test, nicotine at 200 and 400 μg/ml, but not 100 μg/ml compared with vehicle, decreased overall physical activity in BTBR mice. Conclusions: These findings support the hypotheses that the nicotinic cholinergic system modulates social and repetitive behaviors and may be a therapeutic target to treat behavior deficits in ASD. Further, the BTBR mouse may be valuable for investigations of the role of nAChRs in social deficits and repetitive behavior

    RON kinase inhibition reduces renal endothelial injury in sickle cell disease mice

    No full text
    Sickle cell disease patients are at increased risk of developing a chronic kidney disease. Endothelial dysfunction and inflammation associated with hemolysis lead to vasculopathy and contribute to the development of renal disease. Here we used a Townes sickle cell disease mouse model to examine renal endothelial injury. Renal disease in Townes mice was associated with glomerular hypertrophy, capillary dilation and congestion, and significant endothelial injury. We also detected substantial renal macrophage infiltration, and accumulation of macrophage stimulating protein 1 in glomerular capillary. Treatment of human cultured macrophages with hemin or red blood cell lysates significantly increased expression of macrophage membrane-associated protease that might cleave and activate circulating macrophage stimulating protein 1 precursor. Macrophage stimulating protein 1 binds to and activates RON kinase, a cell surface receptor tyrosine kinase. In cultured human renal glomerular endothelial cells, macrophage stimulating protein 1 induced RON downstream signaling, resulting in increased phosphorylation of ERK and AKT kinases, expression of Von Willebrand factor, increased cell motility, and re-organization of F-actin. Specificity of macrophage stimulating protein 1 function was confirmed by treatment with RON kinase inhibitor BMS-777607 that significantly reduced downstream signaling. Moreover, treatment of sickle cell mice with BMS-777607 significantly reduced glomerular hypertrophy, capillary dilation and congestion, and endothelial injury. Taken together, our findings demonstrated that RON kinase is involved in the induction of renal endothelial injury in sickle cell mice. Inhibition of RON kinase activation may provide a novel approach for prevention of the development of renal disease in sickle cell disease

    The three isoforms of nitric oxide synthase distinctively affect mouse nocifensive behavior

    No full text
    Nitric oxide synthases (NOSs) have been shown to modulate thermal hyperalgesia and mechanical hypersensitivity in inflammatory and neuropathic pain. However, little is known about the effect of NOSs on baseline function of sensory nerve fibers. Using genetic deficiency and pharmacologic inhibition of NOSs, we examined the impact of the three isoforms NOS1, NOS2, and NOS3 on baseline nocifensive behavior by measuring current vocalization threshold in response to electrical stimulation at 5, 250, 2000 Hz that preferentially stimulate C, Aδ, and Aβ fibers. In response to 5, 250 and 2000 Hz, NOS1-deficient animals had significantly higher current vocalization thresholds compared with wild-type. Genetic deficiency of NOS2 was associated with higher current vocalization thresholds in response to 5 Hz (C-fiber) stimulation. In contrast, NOS3-deficient animals had an overall weak trend toward lower current vocalization thresholds at 5 Hz and significantly lower current vocalization threshold compared with wild-type animals at 250 and 2000 Hz. Therefore, NOSs distinctively affect baseline mouse current vocalization threshold and appear to play a role on nocifensive response to electrical stimulation of sensory nerve fibers
    corecore