5 research outputs found

    Role of reactive oxygen species: In the cytotoxicity and apoptosis of colon cancer cell line due to green lead nanoparticles

    No full text
    Nanoparticles are involved in regulating the biology of cancer cell treatment, but their mechanism is not fully understood. We synthesized and characterized new green lead nanoparticles (gPbNPs) by using an extract of Ziziphus spina christi leaves. Its cytotoxic and apoptotic effect on the human colon cancer Cacoa2 cell line was evaluated. The gPbNPs were characterized by using energy dispersive X-rays, scanning electron microscopes, and transmission electron microscopes. The cytotoxic effects of gPbNPs against the human colon cancer Cacoa2 cell line were investigated, as were the possible mechanisms underlying the induction of apoptosis. In this experiment, we observed the production of intracellular reactive oxygen species (ROS) in cells, and the installation of caspase 3/7 was higher in cells at 16 µg/mL of gPbNPs. Moreover, the Bax gene was upregulated and the Bcl2 gene was downregulated, and increased caspase-3/7 activity confirmed the apoptotic effect of gPbNPs in cells. The cytotoxicity test confirmed that gPbNPs were selectively toxic in cancer cells and induced apoptosis by activating bad, bax, caspase-3/7, p27, p53 protein, and proteins involved in apoptosis. Our observation showed that gPbNPs induced cell toxicity, increased generation of intracellular ROS, and gene expression of Bcl2, and Bax, in the Cacoa2 cell line. In conclusion, these findings demonstrated that gPbNPs executed toxic effects on the Cacoa2 cell line by activating caspase-3/7 activity

    Investigation of Cytotoxicity Apoptotic and Inflammatory Responses of Biosynthesized Zinc Oxide Nanoparticles from Ocimum sanctum Linn in Human Skin Keratinocyte (Hacat) and Human Lung Epithelial (A549) Cells

    No full text
    Pristine and engineered metal nanoparticles are widely applied in various fields of industry, and as consequences, they are useful as well as harmful to human health and environment. This study aimed at synthesizing the green zinc oxide nanoparticles (ZnNPs) using the leaf extract of Ocimum sanctum Linn and assessing its toxicity on human skin epidermal (HaCaT) and human lung epithelial (A549) cells. The synthesized green ZnNPs (gZnNPs) were characterized by using dynamic light scattering (DLS) and a high-resolution transmission electron microscope. The average size of gZnNPs obtained was 62 nm with a spherical shape. The effects of gZnNPs on the viability of HaCaT and A549 cells were investigated using tetrazolium salt (MTT) for 24 h. We have seen more reduction of cell viability of A549 cells in comparison to HaCaT cells. The induction of intracellular reactive oxygen species (ROS) was measured using DCFDA assay and showed a slightly high intensity of green fluorescence in A549 than HaCaT cells. The different oxidative stress biomarkers such as ROS generation and lipid peroxide were increased, and GSH was decreased in a dose-dependent manner. The apoptotic and necrotic effect of gZnNPs in both cells was carried out using Annexin-V-FITC and propidium iodide staining. More apoptotic and necrotic cells were found at a higher concentration of gZnNPs exposure. Also, we determined the effect of gZnNPs at the molecular level by evaluating the apoptotic and inflammatory markers, in which gZnNPs downregulated Bcl2 and upregulated Bax, caspase-3, and TNF-α in HaCaT and A549 cells. Ultimately, gZnNPs exerted toxicity and apoptosis in HaCaT and A549 cells

    Streptomyces Bioactive Metabolites Prevent Liver Cancer through Apoptosis, Inhibiting Oxidative Stress and Inflammatory Markers in Diethylnitrosamine-Induced Hepatocellular Carcinoma

    No full text
    A safe and effective treatment for liver cancer is still elusive despite all attempts. Biomolecules produced from natural products and their derivatives are potential sources of new anticancer medications. This study aimed to investigate the anticancer potential of a Streptomyces sp. bacterial extract against diethylnitrosamine (DEN)–induced liver cancer in Swiss albino mice and explore the underlying cellular and molecular mechanisms. The ethyl acetate extract of a Streptomyces sp. was screened for its potential anticancer activities against HepG-2 using the MTT assay, and the IC50 was also determined. Gas chromatography–mass spectrometric analysis was used to identify the chemical constituents of the Streptomyces extract. Mice were administered DEN at the age of 2 weeks, and from week 32 until week 36 (4 weeks), they received two doses of Streptomyces extract (25 and 50 mg/kg body weight) orally daily. The Streptomyces extract contains 29 different compounds, according to the GC-MS analysis. The rate of HepG-2 growth was dramatically reduced by the Streptomyces extract. In the mice model. Streptomyces extract considerably lessened the negative effects of DEN on liver functions at both doses. Alpha-fetoprotein (AFP) levels were significantly (p Streptomyces extract was suppressing carcinogenesis. This anticancer effect was also supported by histological analysis. Streptomyces extract therapy additionally stopped DEN-induced alterations in hepatic oxidative stress and enhanced antioxidant activity. Additionally, Streptomyces extract reduced DEN-induced inflammation, as shown by the decline in interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels. Additionally, the Streptomyces extract administration dramatically boosted Bax and caspase-3 levels while decreasing Bcl-2 expressions in the liver according to the Immunohistochemistry examination. In summary, Streptomyces extract is reported here as a potent chemopreventive agent against hepatocellular carcinoma through multiple mechanisms, including inhibiting oxidative stress, cell apoptosis, and inflammation
    corecore