8 research outputs found

    Phytochemical Analysis and α-Amylase Inhibitory Activity of Young and Mature Leaves of Cinnamomum tamala

    Get PDF
    The bioactive chemical components of the plant's origin have been used as primary remedies for a wide array of human diseases including diabetes. The present research deal to evaluate and compare anti-diabetic potential of ethanolic and methanolic, young and mature leaves of medicinally valuable Cinnamomum tamala. Total phenolic and flavonoid contents of young and mature leaves were determined. In vitro α-amylase inhibition was carried out using 2-chloro-4-nitrophenyl-α-D-maltotrioside (CNPG3) as substrate. Phytochemical screening revealed the presence of polyphenols, flavonoids, terpenoids, quinones, carbohydrates, glycosides, diterpenes, tannins, and reducing sugars. The highest total phenolic content and flavonoid content were observed in methanolic extract of mature leaves (13.725 ± 0.54 mg GAE/g) and young leaves (12.591 ± 0.71 mg QE/g) respectively. Methanolic young leaves extract showed α-amylase inhibition with IC50 value 224.6 ± 2.76 μg/mL as compared to acarbose with IC50 value 5.93 ± 0.14 μg/mL. The result suggests that young leaves of C. tamala had anti-diabetic activity so further work should be carried out

    LC-HRMS-Based Profiling: Antibacterial and Lipase Inhibitory Activities of Some Medicinal Plants for the Remedy of Obesity

    No full text
    Globally, obesity is a serious health concern that causes numerous diseases, including type 2 diabetes, hypertension, cardiovascular diseases, etc. Medicinal plants have been used to aid in weight loss since ancient times. Thus, this research is focused on the exploration of pancreatic lipase inhibitory activity and secondary metabolite profiling of Bergenia ciliata, Mimosa pudica, and Phyllanthus emblica, selected based on an ethnobotanical survey. The lipase inhibition was investigated using 4-nitrophenyl butyrate (p-NPB) as a substrate. To uncover further therapeutic potentials of these medicinal plants, antimicrobial activity and minimum inhibitory concentration (MIC) of the extracts were also determined. The ethyl acetate plant extracts showed higher antimicrobial activity against Staphylococcus aureus, Escherichia coli, Salmonella typhi, and Shigella sonnei. The MIC of ethyl acetate extracts of medicinal plants considered in this study ranges from 1.56 to 6.25 mg/mL. The hexane fraction of Mimosa pudica and Phyllanthus emblica showed a higher lipase inhibitory activity as compared to others, with IC50 values of 0.49 ± 0.02 and 2.45 ± 0.003 mg/mL, respectively. In the case of Bergenia ciliata, the methanolic extract inhibited lipase more effectively than others, with an IC50 value of 1.55 ± 0.02 mg/mL (IC50 value of orlistat was 179.70 ± 3.60 µg/mL). A mass spectrometry analysis of various solvent/solvent partition fractions (extracts) revealed 29 major secondary metabolites. The research offers a multitude of evidence for using medicinal plants as antiobesity and antimicrobial agents

    Biochemical Analysis and Human Aldose Reductase Inhibition Activity of Selected Medicinal Plants of Nepal

    No full text
    Aldose reductase has received extensive research as a key enzyme in the development of long-term problems linked to diabetes mellitus. Overexpression of this enzyme or with exceeded glucose concentration in the blood increases sorbitol on the retina leading to retinopathy, which is the adverse effect of type II diabetes. Approximately 100 million people are suffering from diabetic retinopathy globally. This research is focused on studying the total phenolic content (TPC), total flavonoid content (TFC), antioxidant potential, and aldose reductase inhibiting properties of selected medicinal plants such as Anacyclus pyrethrum, Bergenia ciliata, Rhododendron arboreum, and Swertia chirayita. In addition, ADMET analysis and molecular docking of seven previously identified compounds from the chosen medicinal plants were carried out against human aldose reductase (PDB ID: 4JIR). The ethanol extract of S. chirayita exhibited the highest TPC (4.63 ± 0.16 mg GAE/g) and TFC (0.90 ± 0.06 mg QE/g). Analysis of 2,2-diphenyl-1-picrylhydrazyl (DPPH)-based antioxidant assay showed that IC50 of the ethanolic extract of B. cilata and R. arboreum showed a significant antioxidant activity with IC50 value of 0.05 mg/mL. The percentage inhibition of AR by extract of B. ciliata (94.74 ± 0.01%) was higher than other plant extracts. A molecular docking study showed that morin isolated from B. ciliata showed a good binding interaction with AR. This study showed that the extracts of A. pyrethrum, B. ciliata, and R. arboreum could be potential sources of inhibitors against AR to treat retinopathy

    Antidiabetic, Antimicrobial, and Molecular Profiling of Selected Medicinal Plants

    No full text
    Natural products have been the center of attraction ever since they were discovered. Among them, plant-based natural products were popular as analgesics, anti-inflammatory, antidiabetic, and cosmetics and possess widespread biotechnological applications. The use of plant products as cosmetics and therapeutics is deep-rooted in Nepalese society. Although there are few ethnobotanical studies conducted, extensive research of these valuable medicinal plants has not been a priority due to the limitation of technology and infrastructure. Here, we selected 4 traditionally used medicinal plants to examine their bioactive properties and their enzyme inhibition potential. α-Glucosidase and α-amylase inhibitory activities were investigated using an in vitro model followed up by antioxidant and antimicrobial activities. The present study shows that ethyl acetate fraction of Melastoma melabathrium (IC50 9.1 ± 0.3 µg/mL) and water fraction Acacia catechu (IC50 9.0 ± 0.6 µg/mL) exhibit strong α-glucosidase inhibition. Likewise, the highest α-amylase inhibition was shown by crude extracts of Ficus religiosa (IC50 29.2 ± 1.2 µg/mL) and ethyl acetate fractions of Shorea robusta (IC50 69.3 ± 1.1 µg/mL), and the highest radical scavenging activity was shown by F. religiosa with an IC50 67.4 ± 0.6 µg/mL. Furthermore, to identify the metabolites within the fractions, we employed high-resolution mass spectrometry (LC-HRMS) and annotated 17 known metabolites which justify our assumption on activity. Of 4 medicinal plants examined, ethyl acetate fraction of S. robusta, ethyl acetate fraction of M. melabathrium, and water or ethyl acetate fraction of A. catechu extracts illustrated the best activities. With our study, we set up a foundation that provides authentic evidence to the community for use of these traditional plants. The annotated metabolites in this study support earlier experimental evidence towards the inhibition of enzymes. Further study is necessary to explore the clinical efficacy of these secondary molecules, which might be alternatives for the treatment of diabetes and pathogens

    Microbial Enzymes Used in Bioremediation

    No full text
    Emerging pollutants in nature are linked to various acute and chronic detriments in biotic components and subsequently deteriorate the ecosystem with serious hazards. Conventional methods for removing pollutants are not efficient; instead, they end up with the formation of secondary pollutants. Significant destructive impacts of pollutants are perinatal disorders, mortality, respiratory disorders, allergy, cancer, cardiovascular and mental disorders, and other harmful effects. The pollutant substrate can recognize different microbial enzymes at optimum conditions (temperature/pH/contact time/concentration) to efficiently transform them into other rather unharmful products. The most representative enzymes involved in bioremediation include cytochrome P450s, laccases, hydrolases, dehalogenases, dehydrogenases, proteases, and lipases, which have shown promising potential degradation of polymers, aromatic hydrocarbons, halogenated compounds, dyes, detergents, agrochemical compounds, etc. Such bioremediation is favored by various mechanisms such as oxidation, reduction, elimination, and ring-opening. The significant degradation of pollutants can be upgraded utilizing genetically engineered microorganisms that produce many recombinant enzymes through eco-friendly new technology. So far, few microbial enzymes have been exploited, and vast microbial diversity is still unexplored. This review would also be useful for further research to enhance the efficiency of degradation of xenobiotic pollutants, including agrochemical, microplastic, polyhalogenated compounds, and other hydrocarbons

    Molecular Identification and Antimicrobial Potential of Streptomyces Species from Nepalese Soil

    No full text
    Streptomyces are widely used for the production of secondary metabolites with diverse biological activities, including antibiotics. The necessity of alternative antimicrobial agents against multidrug-resistant pathogens is indispensable. However, the production of new therapeutics is delayed in recent days. Thus, the isolation of new Streptomyces species has drawn attention. Nepal—a country rich in biodiversity—has got high possibilities for the discovery of members of actinomycetes, especially in the higher altitudes. However, in vain, only a few screening research works have been reported from Nepal to date. Streptomyces species were isolated on ISP4 media, and characterization was performed according to morphological similarity and 16S rRNA sequence similarity using bioinformatic tools. Ethyl acetate extracts of Streptomyces species were prepared, and the antimicrobial activity was carried out using agar well diffusion technique. In this report, 18 Streptomyces species isolated from the soil were reported based on sequence analysis of 16S rRNA. Among them, 12 isolates have shown antibacterial activity against extended-spectrum beta-lactamase- (ESBL-) producing Escherichia coli. Here, we have also analyzed 16S rRNA in 27 Streptomyces species whose whole-genome sequence is available, which has revealed that some species have multiple copies of the 16S gene (∼1.5 kb) with significant variation in nucleotides. In contrast, some Streptomyces species shared identical DNA sequences in multiple copies of 16S rRNA. The sequencing of numerous copies of 16S rRNA is not necessary, and the molecular sequencing of this region is not sufficient for the identification of bacterial species. The Streptomyces species-derived ethyl acetate extracts from Nepalese soil demonstrate potential activity against ESBL-producing E. coli. Thus, they are potential candidates for antibiotics manufacturing in the future
    corecore