7 research outputs found

    MEMBRANE FOULING IN ANOXIC-OXIC MBR SYSTEM OPERATED AT LOW DISSOLVED OXYGEN

    Get PDF
    Membrane fouling in a lab-scale anoxic-oxic MBR operated at low dissolved oxygen (DO) was investigated in this study. The system includes an anoxic, an oxic and a membrane basin with the working volumes of 73 L, 124 L, and 68 L, respectively. A hollow fibre membrane module with a pore size of 0.2 µm and with total filter area of 1.44 m2 was submerged in the membrane basin. The system was operated at various low DO concentrations of 2.0; 1.5; 1.0; and 0.5 mg/L. The results shown that at DO higher than 1.0 mg/L, COD and TN removal efficiencies were higher than 90 % and 60 %, respectively. However, low DO (less than 1.0 mg/L) lead to poor sludge flocculation which deteriorate the membrane filterability. The TMP increased dramatically at different DO levels. There was a significant increase of TMP during first 15-days experiment at DO 2.0 mg/L. After that the TMP was increased slowly and lower than 16 kPa to until 30-days. In contrast, when DO was reduced to 1.5, 1.0, and 0.5, the TMP was increased sharply almost from 1 to over 20 kPa within about 15 days

    Effect of Organic Loading Rates on Performance of Treating Dairy Wastewater in a Lab-Scale Sequencing Batch Reactor

    Get PDF
    This study aims to investigate, the effect of organic loading rates (OLRs), nutrient ratio addition, and sludge retention time (SRT) on treating dairy wastewater in a sequencing batch reactor (SBR) system. This investigation is verified by experiments conducted in 3 phases at 3 different OLRs (1.8, 1.2, and 0.9 kg/m3d, respectively).  Urea ((NH2)2CO) is added to make a suitable (COD:N:P) ratio of (100:5:1) in dairy wastewater. The SRT is adjusted from 50 days to an appropriate value of 18 days. The obtained results show that the COD, TN, and TP removal efficiencies are increased with decreasing OLRs. Sludge concentration in the SBR tank is stable at 1100 mg/L after adding (NH2)2CO. In addition, the SBR operated at a suitable SRT (i.e. 18 days) helps the biomass stably, resulting in enhancement of COD, TN, and TP removal. The results are helpful to the design of SBR for treating dairy wastewater

    Advances in Membrane Materials and Processes for Desalination of Brackish Water

    No full text
    Purpose of Review: This review aims to succinctly summarize recent advances of four key membrane processes (e.g., reverse osmosis (RO), forward osmosis (FO), electrodialysis (ED), and membrane distillation (MD)) in membrane materials and process designs, to elucidate the contributions of these advances to the steadfast growth of brackish water membrane desalination processes. With detailed analyses and discussions, the ultimate purpose of the review is to shed light on the future direction of brackish water desalination using membrane processes. Recent Findings: Brackish water has widely varying particulate matter and boron contents, posing great risks of membrane fouling and excessive boron levels to the membrane desalination processes. Recent advances in these four membrane processes largely focus on improving fouling resistance, boron rejection, water flux, and energy efficiency. Aquaporin membranes and thin-film composite polyamide membranes incorporated with nanoparticles exhibit excellent performances for RO and FO, whereas super-hydrophobic membranes prove their great potentials for MD. While recent advances in RO and ED process designs are orientated towards membrane fouling prevention by exploring respectively novel energy-saving membrane-based pre-treatment and reversal operation, recent studies on FO and MD are centered on reducing the energy costs by advancing the fertilizer-drawn concept and utilizing waste heat. Summary: Membrane processes are dominating brackish water desalination, and this trend is hardly to change. Membranes based on nanoparticles and other novel materials are deemed the next membrane generation, and innovative membrane process designs have demonstrated great potentials for brackish water desalination. Nevertheless, further works are needed to scale up these novel membrane materials and designs

    Membrane distillation regeneration of liquid desiccant solution for air-conditioning: Insights into polarisation effects and mass transfer

    No full text
    © 2020 Membrane distillation (MD) embodies ideal attributes for the regeneration of liquid desiccant solutions used in air-conditioning systems. The MD process has been experimentally proven technically viable for the regeneration of liquid desiccant solutions; however, it suffers severely from temperature and concentration polarisation effects. In this study, for the first time a descriptive mass and heat transfer (DMHT) model is developed to quantitatively describe the mass transfer and the negative impacts of temperature and concentration polarisation during the MD regeneration of the LiCl desiccant solution. The simulation results demonstrate significant reduction in water flux along the membrane due to decreasing mass transfer coefficient (Cm) and transmembrane water vapour pressure gradient (ΔPm). Over the length of the membrane leaf of 0.145 m, water flux reduces by 31% from 11.0 to 7.6 L/m2⋅h. The temperature and concentration polarisation effects cause a substantial decline in the process driving force - ΔPm is only two thirds of the water vapour pressure difference between the bulk feed and distillate (ΔPb). Temperature polarisation is the predominant cause of the reduction in ΔPm compared with ΔPb; however, the negative impact of concentration polarisation is also notable. Finally, amongst the key operating conditions, the inlet feed temperature and concentration exert the most profound influence on the temperature and concentration polarisation during the DCMD regeneration of the hyper saline LiCl solution

    A study on the performance of a pilot scale A2/0-MBR system in treating domestic wastewater

    No full text
    Abstract: Phosphorus and nitrogen are the important eutrophication nutrients. They were removed in the anaerobic/anoxic/oxic (A2/O) system through biologically. The use of pilot scale A2/O systems with immersed membranes in removing nutrients phosphorus and nitrogen were investigated over a period of 150 days. The A2/O membrane bio reactor (MBR) was operated at a flux of 17 LMH. The designed flux was increased stepwise over a period of one week. The reactor was operated with the mixed liquid suspended solids (MLSS) concentrations in the range of 7000-8000 mg l -1 . The phosphorus removal was found to be in the range of 74-84%. The ammonification was completed in the aerobic zone and the ammonia concentration was almost nil. Nitrate concentration in the anoxic zone was found to be in the range of 0.3-1.6 mg l -1 indicating efficient denitrification. The nitrogen removal efficiency of the A2/O-MBR system was in the range of 68 to 75%. The chemical oxygen demand (COD) in the effluent was in the range of 8-5 mgl -1 indicating the efficiency of membrane. During the period of reactor operation transmembrane pressure (TMP) of the reactor increased slowly from 0 to 6 -cmHg over a period of 150 days
    corecore