1 research outputs found
Breaking quantum linearity: constraints from human perception and cosmological implications
Resolving the tension between quantum superpositions and the uniqueness of
the classical world is a major open problem. One possibility, which is
extensively explored both theoretically and experimentally, is that quantum
linearity breaks above a given scale. Theoretically, this possibility is
predicted by collapse models. They provide quantitative information on where
violations of the superposition principle become manifest. Here we show that
the lower bound on the collapse parameter lambda, coming from the analysis of
the human visual process, is ~ 7 +/- 2 orders of magnitude stronger than the
original bound, in agreement with more recent analysis. This implies that the
collapse becomes effective with systems containing ~ 10^4 - 10^5 nucleons, and
thus falls within the range of testability with present-day technology. We also
compare the spectrum of the collapsing field with those of known cosmological
fields, showing that a typical cosmological random field can yield an efficient
wave function collapse.Comment: 13 pages, LaTeX, 3 figure