5 research outputs found
NRP/Optineurin Cooperates with TAX1BP1 to Potentiate the Activation of NF-ÎşB by Human T-Lymphotropic Virus Type 1 Tax Protein
Nuclear factor (NF)-ÎşB is a major survival pathway engaged by the Human T-Lymphotropic Virus type 1 (HTLV-1) Tax protein. Tax1 activation of NF-ÎşB occurs predominantly in the cytoplasm, where Tax1 binds NF-ÎşB Essential Modulator (NEMO/IKKÎł) and triggers the activation of IÎşB kinases. Several independent studies have shown that Tax1-mediated NF-ÎşB activation is dependent on Tax1 ubiquitination. Here, we identify by co-immunoprecipitation assays NEMO-Related Protein (NRP/Optineurin) as a binding partner for Tax1 in HTLV-1 infected and Tax1/NRP co-expressing cells. Immunofluorescence studies reveal that Tax1, NRP and NEMO colocalize in Golgi-associated structures. The interaction between Tax1 and NRP requires the ubiquitin-binding activity of NRP and the ubiquitination sites of Tax1. In addition, we observe that NRP increases the ubiquitination of Tax1 along with Tax1-dependent NF-ÎşB signaling. Surprisingly, we find that in addition to Tax1, NRP interacts cooperatively with the Tax1 binding protein TAX1BP1, and that NRP and TAX1BP1 cooperate to modulate Tax1 ubiquitination and NF-ÎşB activation. Our data strongly suggest for the first time that NRP is a critical adaptor that regulates the assembly of TAX1BP1 and post-translationally modified forms of Tax1, leading to sustained NF-ÎşB activation
Dual function of MyD88 in RAS signaling and inflammation, leading to mouse and human cell transformation
Accumulating evidence points to inflammation as a promoter of carcinogenesis. MyD88 is an adaptor molecule in TLR and IL-1R signaling that was recently implicated in tumorigenesis through proinflammatory mechanisms. Here we have shown that MyD88 is also required in a cell-autonomous fashion for RAS-mediated carcinogenesis in mice in vivo and for MAPK activation and transformation in vitro. Mechanistically, MyD88 bound to the key MAPK, Erk, and prevented its inactivation by its phosphatase, MKP3, thereby amplifying the activation of the canonical RAS pathway. The relevance of this mechanism to human neoplasia was suggested by the finding that MyD88 was overexpressed and interacted with activated Erk in primary human cancer tissues. Collectively, these results show that in addition to its role in inflammation, MyD88 plays what we believe to be a crucial direct role in RAS signaling, cell-cycle control, and cell transformation
A Gender-Dependent Molecular Switch of Inflammation via MyD88/Estrogen Receptor-Alpha Interaction
International audienceIntroduction: Most Toll-like receptors and IL-1/IL-18 receptors activate a signaling cascade via the adaptor molecule MyD88, resulting in NF-κB activation and inflammatory cytokine and chemokine production. Females are less susceptible than males to inflammatory conditions, presumably due to protection by estrogen. The exact mechanism underlying this protection is unknown.Methods: MCF7 cells expressing wild-type or mutated LXXLL motif were used to determine MyD88/estrogen receptor (ER)-a interaction by immunoprecipitation and cell activation by ELISA and luciferase reporter assay. IL-1b and/or E2 were used to activate MCF7 cells expressing normal or knocked down levels of PRMT1. Finally, in situ proximity ligation assay with anti-MyD88 and anti-methylated ER-a (methER-a) antibodies was used to evaluate MyD88/methylated ER-a interaction in THP1 cells and histological sections.Results: We show that MyD88 interacts with a methylated, cytoplasmic form of estrogen receptor-alpha (methER-α). This interaction is required for NF-κB transcriptional activity and pro-inflammatory cytokine production, and is dissociated by estrogen. Importantly, we show a strong gender segregation in gametogenic reproductive organs, with MyD88/methER-α interactions found in testicular tissues and in ovarian tissues from menopausal women, but not in ovaries from women age 49 and less - suggesting a role for estrogen in disrupting this complex in situ.Discussion: Collectively, our results indicate that the formation of MyD88/methER-α complexes during inflammatory signaling and their disruption by estrogen may represent a mechanism that contributes to gender bias in inflammatory responses