236 research outputs found

    Online Variance Reduction for Stochastic Optimization

    Full text link
    Modern stochastic optimization methods often rely on uniform sampling which is agnostic to the underlying characteristics of the data. This might degrade the convergence by yielding estimates that suffer from a high variance. A possible remedy is to employ non-uniform importance sampling techniques, which take the structure of the dataset into account. In this work, we investigate a recently proposed setting which poses variance reduction as an online optimization problem with bandit feedback. We devise a novel and efficient algorithm for this setting that finds a sequence of importance sampling distributions competitive with the best fixed distribution in hindsight, the first result of this kind. While we present our method for sampling datapoints, it naturally extends to selecting coordinates or even blocks of thereof. Empirical validations underline the benefits of our method in several settings.Comment: COLT 201

    Logistic Regression: Tight Bounds for Stochastic and Online Optimization

    Full text link
    The logistic loss function is often advocated in machine learning and statistics as a smooth and strictly convex surrogate for the 0-1 loss. In this paper we investigate the question of whether these smoothness and convexity properties make the logistic loss preferable to other widely considered options such as the hinge loss. We show that in contrast to known asymptotic bounds, as long as the number of prediction/optimization iterations is sub exponential, the logistic loss provides no improvement over a generic non-smooth loss function such as the hinge loss. In particular we show that the convergence rate of stochastic logistic optimization is bounded from below by a polynomial in the diameter of the decision set and the number of prediction iterations, and provide a matching tight upper bound. This resolves the COLT open problem of McMahan and Streeter (2012)

    Beyond Convexity: Stochastic Quasi-Convex Optimization

    Full text link
    Stochastic convex optimization is a basic and well studied primitive in machine learning. It is well known that convex and Lipschitz functions can be minimized efficiently using Stochastic Gradient Descent (SGD). The Normalized Gradient Descent (NGD) algorithm, is an adaptation of Gradient Descent, which updates according to the direction of the gradients, rather than the gradients themselves. In this paper we analyze a stochastic version of NGD and prove its convergence to a global minimum for a wider class of functions: we require the functions to be quasi-convex and locally-Lipschitz. Quasi-convexity broadens the con- cept of unimodality to multidimensions and allows for certain types of saddle points, which are a known hurdle for first-order optimization methods such as gradient descent. Locally-Lipschitz functions are only required to be Lipschitz in a small region around the optimum. This assumption circumvents gradient explosion, which is another known hurdle for gradient descent variants. Interestingly, unlike the vanilla SGD algorithm, the stochastic normalized gradient descent algorithm provably requires a minimal minibatch size

    On Graduated Optimization for Stochastic Non-Convex Problems

    Full text link
    The graduated optimization approach, also known as the continuation method, is a popular heuristic to solving non-convex problems that has received renewed interest over the last decade. Despite its popularity, very little is known in terms of theoretical convergence analysis. In this paper we describe a new first-order algorithm based on graduated optimiza- tion and analyze its performance. We characterize a parameterized family of non- convex functions for which this algorithm provably converges to a global optimum. In particular, we prove that the algorithm converges to an {\epsilon}-approximate solution within O(1/\epsilon^2) gradient-based steps. We extend our algorithm and analysis to the setting of stochastic non-convex optimization with noisy gradient feedback, attaining the same convergence rate. Additionally, we discuss the setting of zero-order optimization, and devise a a variant of our algorithm which converges at rate of O(d^2/\epsilon^4).Comment: 17 page

    SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex Optimization

    Full text link
    We consider distributed learning scenarios where M machines interact with a parameter server along several communication rounds in order to minimize a joint objective function. Focusing on the heterogeneous case, where different machines may draw samples from different data-distributions, we design the first local update method that provably benefits over the two most prominent distributed baselines: namely Minibatch-SGD and Local-SGD. Key to our approach is a slow querying technique that we customize to the distributed setting, which in turn enables a better mitigation of the bias caused by local updates

    μ2\mu^2-SGD: Stable Stochastic Optimization via a Double Momentum Mechanism

    Full text link
    We consider stochastic convex optimization problems where the objective is an expectation over smooth functions. For this setting we suggest a novel gradient estimate that combines two recent mechanism that are related to notion of momentum. Then, we design an SGD-style algorithm as well as an accelerated version that make use of this new estimator, and demonstrate the robustness of these new approaches to the choice of the learning rate. Concretely, we show that these approaches obtain the optimal convergence rates for both noiseless and noisy case with the same choice of fixed learning rate. Moreover, for the noisy case we show that these approaches achieve the same optimal bound for a very wide range of learning rates
    corecore