282 research outputs found

    Inelastic Scattering of Dark Matter with Heavy Cosmic Rays

    Full text link
    We investigate the impact of inelastic collisions between dark matter (DM) and heavy cosmic ray (CR) nuclei on CR propagation. We approximate the fragmentation cross-sections for DM-CR collisions using collider-measured proton-nuclei scattering cross-sections, allowing us to assess how these collisions affect the spectra of CR Boron and Carbon. We derive new CR spectra from DM-CR collisions by incorporating these DM-CR cross-sections into the source terms and solving the diffusion equation for the complete network of reactions involved in generating secondary species. Utilizing the latest data from AMS-02 and DAMPE on the Boron-to-Carbon ratio, we estimate a 95\% upper limit for the effective inelastic cross-section of DM-proton as a function of DM mass. Our findings reveal that at mχ2MeVm_\chi \simeq 2 \,\rm{MeV}, the effective inelastic cross-section between DM and protons must be less than O(1032) cm2\mathcal{O}(10^{-32})~{\rm cm}^2.Comment: 25 pages, 8 figure

    F-Eval: Assessing Fundamental Abilities with Refined Evaluation Methods

    Full text link
    Large language models (LLMs) garner significant attention for their unprecedented performance, leading to an increasing number of researches evaluating LLMs. However, these evaluation benchmarks are limited to assessing the instruction-following capabilities, overlooking the fundamental abilities that emerge during the pre-training stage. Previous subjective evaluation methods mainly reply on scoring by API models. However, in the absence of references, large models have shown limited ability to discern subtle differences. To bridge the gap, we propose F-Eval, a bilingual evaluation benchmark to evaluate the fundamental abilities, including expression, commonsense and logic. The tasks in F-Eval include multi-choice objective tasks, open-ended objective tasks, reference-based subjective tasks and reference-free subjective tasks. For reference-free subjective tasks, we devise new evaluation methods, serving as alternatives to scoring by API models. We conduct evaluations on 13 advanced LLMs. Results show that our evaluation methods show higher correlation coefficients and larger distinction than other evaluators. Additionally, we discuss the influence of different model sizes, dimensions, and normalization methods. We anticipate that F-Eval will facilitate the study of LLMs\u27 fundamental abilities.ACL 202

    A First Generation Microsatellite- and SNP-Based Linkage Map of Jatropha

    Get PDF
    Jatropha curcas is a potential plant species for biodiesel production. However, its seed yield is too low for profitable production of biodiesel. To improve the productivity, genetic improvement through breeding is essential. A linkage map is an important component in molecular breeding. We established a first-generation linkage map using a mapping panel containing two backcross populations with 93 progeny. We mapped 506 markers (216 microsatellites and 290 SNPs from ESTs) onto 11 linkage groups. The total length of the map was 1440.9 cM with an average marker space of 2.8 cM. Blasting of 222 Jatropha ESTs containing polymorphic SSR or SNP markers against EST-databases revealed that 91.0%, 86.5% and 79.2% of Jatropha ESTs were homologous to counterparts in castor bean, poplar and Arabidopsis respectively. Mapping 192 orthologous markers to the assembled whole genome sequence of Arabidopsis thaliana identified 38 syntenic blocks and revealed that small linkage blocks were well conserved, but often shuffled. The first generation linkage map and the data of comparative mapping could lay a solid foundation for QTL mapping of agronomic traits, marker-assisted breeding and cloning genes responsible for phenotypic variation

    Critical current density: Measurements vs. reality

    Get PDF
    Different experimental techniques are employed to evaluate the critical current density (Jc), namely transport current measurements and two different magnetisation measurements forming quasi-equilibrium and dynamic critical states. Our technique-dependent results for superconducting YBa 2Cu3O7 (YBCO) film and MgB2 bulk samples show an extremely high sensitivity of Jc and associated interpretations, such as irreversibility fields and Kramer plots, which lose meaning without a universal approach. We propose such approach for YBCO films based on their unique pinning features. This approach allows us to accurately recalculate the magnetic-field-dependent Jc obtained by any technique into the Jc behaviour, which would have been measured by any other method without performing the corresponding experiments. We also discovered low-frequency-dependent phenomena, governing flux dynamics, but contradicting the considered ones in the literature. The understanding of these phenomena, relevant to applications with moving superconductors, can clarify their dramatic impact on the electric-field criterion through flux diffusivity and corresponding measurements. © Copyright EPLA, 2013

    MHM: A Multiple Handshaking MAC Protocol for Underwater Acoustic Sensor Networks

    Full text link
    Underwater acoustic sensor networks (UWASNs) are effective tools for exploring and observing the ocean. Due to the nonnegligible physical restrictions of the underwater acoustic communication, most MAC protocols applied in the existing terrestrial wireless networks become inapplicable. In this paper, we propose a multiple handshaking MAC protocol for UWASNs called multihandshaking MAC (MHM). Using the method of multiple handshaking and competitive mechanism of control packets, our protocol is proposed to make the contending nodes share the underwater acoustic channel much more fairly and more efficiently. The main idea of MHM is to allow multiple nodes to transmit and receive data packets at the same time without packet collisions. We also propose a competitive mechanism of control packets, which can guarantee that there will not be data collisions in the process of multiple packet transmissions. Simulation results show that our protocol can achieve better performance, including throughput, delay, and fairness. </jats:p
    corecore